

5.2 Hess's Law

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Topic	5.2 Hess's Law
Difficulty	Medium

Time allowed: 70

Score: /51

Percentage: /100

 $Head to \underline{save my exams.co.uk} for more awe some resources \\$

Question la

a)	Define the term standard	enthalpy of formation, ∆	H_{f}^{Θ}
----	--------------------------	--------------------------	------------------

[3 marks]

Question 1b

b) State Hess's Law.

[2 marks]

Question 1c

c) The following equation represents the second step in the extraction of titanium, using the Kroll process:

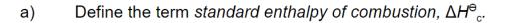
$$TiCl_4(g) + 4Na(l) \rightarrow 4NaCl(s) + Ti(s)$$

Use the standard formation data shown in **Table 1** to calculate the enthalpy change for the reaction, ΔH_{r}^{Θ} .

Table 1

	TiCl₄ (g)	Na (I)	NaCl (s)	Ti (s)
ΔH ^Θ _f (kJ mol ⁻¹)	-720	+3	-411	0

[2 marks]


Question 1d

d) Construct a Hess's Law cycle for the reaction of calcium fluoride, CaF_2 (s), and sulfuric acid, H_2SO_4 (aq).

$$CaF_2(s) + H_2SO_4(aq) \rightarrow 2HF(g) + CaSO_4(s)$$

[3 marks]

Question 2a

[3 marks]

Question 2b

b) Write an equation for the complete combustion of propanol, CH₃CH₂CH₂OH (I).

[2 marks]

Question 2c

c) Construct a Hess's Law cycle for the complete combustion of propanol.

Table 1

	CH ₃ CH ₂ CH ₂ OH (I)	O ₂ (g)	CO ₂ (g)	H ₂ O (I)
ΔH ^Θ _f (kJ mol ⁻¹) -303		0	-393.5	-285.8

[3 marks]

Question 2d

d) Use the data given in **Table 1** in part (d) to calculate the enthalpy change of the reaction, $\Delta H_{r.}^{\Theta}$

[3 marks]

Question 3a

a) Urea can be used as a fertiliser and is manufactured by the reaction of ammonia and carbon dioxide via the following equation.

$$2\mathsf{NH}_3(\mathsf{g}) + \mathsf{CO}_2(\mathsf{g}) \to \mathsf{NH}_2\mathsf{CONH}_2(\mathsf{s}) + \mathsf{H}_2\mathsf{O} \ (\mathsf{I})$$

Using the data in **Table 1** calculate the enthalpy change for the formation of urea, ΔH_r^e .

Table 1

	NH₃ (g)	NH ₂ CONH ₂ (s)	CO ₂ (g)	H ₂ O (I)
ΔH ^Θ _f (kJ mol ⁻¹)	-46.2	-333.2	-393.5	-285.8

[2 marks]

Question 3b

b) Ammonia reacts with oxygen to produce steam and nitrogen(II) oxide. Draw a Hess's Law cycle which could be used to calculate the enthalpy change of the reaction using formation data.

[3 marks]

Question 3c

c) Use Hess's Law and the information below to calculate the enthalpy change, ΔH^{Θ}_{r} , for the conversion of one mole of ethene and one mole of hydrogen to one mole of ethane.

$$\begin{split} &C_2 H_4 \ (g) + 3 O_2 \ (g) \rightarrow 2 C O_2 \ (g) + 2 H_2 O \ (I) \\ &C_2 H_6 \ (g) + 3.5 O_2 \ (g) \rightarrow 2 C O_2 \ (g) + 3 H_2 O \ (I) \\ &H_2 \ (g) + 0.5 O_2 \ (g) \rightarrow H_2 O \ (I) \\ \end{split} \qquad \qquad \Delta H_r^{\Theta} = -1560 \ \text{kJ mol}^{-1} \\ &\Delta H_r^{\Theta} = -286 \ \text{kJ mol}^{-1} \end{split}$$

[3 marks]

Question 3d

d) Use Hess's Law and the information below to calculate the enthalpy change for the conversion of one mole of solid carbon into carbon monoxide.

C (s) +
$$O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\Theta}_{r} = -393.5 \text{ kJ mol}^{-1}$

$$\Delta H_{r}^{\Theta} = -393.5 \text{ kJ mol}^{-1}$$

CO (g) +
$$\frac{1}{2}$$
O₂ (g) \rightarrow CO₂ (g) ΔH^{Θ}_{r} = - 283.5 kJ mol⁻¹

$$\Delta H_{r}^{\Theta} = -283.5 \text{ kJ mol}^{-1}$$

[3 marks]

Question 4a

a) Define the term standard enthalpy of reaction, ΔH^{Θ}_{r} .

[2 marks]

Question 4b

Use Hess's Law and the information below to calculate the enthalpy change, ΔH^{Θ}_{r} , for b) the conversion of methane and ammonia to form hydrogen cyanide and hydrogen.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\Delta H_{r}^{\Theta} = -91.8 \text{ kJ}$$

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$

$$\Delta H^{\Theta}_{r} = -74.9 \text{ kJ}$$

$$H_2(g) + 2C(g) + N_2(g) \rightarrow 2HCN(g)$$

$$\Delta H^{\Theta}_{r} = 270.3 \text{ kJ}$$

	Head to <u>savemyexams.co.uk</u> for more awe some resources
	[4 marks]
Questio	n 4c
c)	Using your answer to part (b) draw a reaction profile diagram for the reaction outlined.
	[3 marks]
Questio	n 4d
d)	Draw the Lewis structure for hydrogen cyanide, HCN.
,	
	[1 mark]

Question 5a

a) Butane, C₄H₁₀, is typically used as fuel for cigarette lighters and portable stoves, a propellant in aerosols, a heating fuel, a refrigerant, and in the manufacture of a wide range of products.

Write an equation for the complete combustion of butane.

[1 mark]

Question 5b

b) Determine the enthalpy of formation of butane, C₄H₁₀, using the enthalpy of combustion data below.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H_f^{\Theta} = -394 \text{ kJ}$

$$H_{2}\left(g\right)+0.5O_{2}\left(g\right)\rightarrow H_{2}O\left(I\right)$$
 $\Delta H_{f}^{\Theta}=-286~kJ$

$$C_4H_{10}(g) + 6.5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$$
 $\Delta H_f^{\Theta} = -2878 \text{ kJ}$

[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5c

c) Butane can be formed from the hydrogenation of butene. Using the data in **Table 1**, determine a value for the enthalpy of formation.

Table 1

Bond	Mean Bond Enthalpy Δ <i>H</i> ^e (kJ mol ⁻¹)
C-C	346
C-H	414
H-H	436
C=C	614

[3 marks]

Question 5d

d) The data book value for the hydrogenation of butene is -126 kJ mol-1. Suggest why your answer to part (c) may be different to this value.

[1 mark]