

3.6 Trigonometric Equations & Identities

Question Paper

Course DP IB Maths Section 3. Geometry & Trigonometry Topic 3.6 Trigonometric Equations & Identities Difficulty Very Hard

Time allowed: 80

Score: /66

Percentage: /100

Question la

The value of $\tan 2\alpha = \frac{2}{5}$ for $\frac{\pi}{2} \le 2\alpha \le \frac{3\pi}{2}$.

- (a) Find
 - (i) $\sin 2\alpha$
 - (ii) $\cos 2\alpha$

[3 marks]

Question 1b

(b) Hence show that

$$\sin \alpha = \sqrt{\frac{k + 5\sqrt{k}}{2k}}$$
 and $\cos \alpha = -\sqrt{\frac{k - 5\sqrt{k}}{2k}}$

where k is a positive integer to be determined, and use those results to find the exact value of $\tan \alpha$.

[6 marks]

Question 2

The value of $\sin B = x$, for $\frac{\pi}{2} < B < \pi$.

Find the following in terms of x:

- (i) $\sin 2B$
- (ii) $\cos 2B$
- (iii) $\tan 2B$.

[7 marks]

Question 3a

It is given that $\cos 6x = p$.

(a) Show that

$$\tan 3x = \pm \sqrt{\frac{1-p}{1+p}}$$

[5 marks]

Question 3b

- (b) For $0 < x < \frac{\pi}{3}$, determine the range of x values for which
 - (i) the 'plus' version of the part (a) result should be used
 - (ii) the 'minus' version of the part (a) result should be used
 - (iii) the value of $\tan 3x$ is not defined.

[3 marks]

Question 4

Solve the equation

$$\sin 2\theta - \sin \theta + \sqrt{3}\cos \theta = \frac{\sqrt{3}}{2}$$

in the interval $0 \le \theta \le 360^{\circ}$.

[7 marks]

Question 5

Solve the equation

$$\sin 2x \tan 2x = \frac{1}{2\cos 2x}$$

in the interval $-90^{\circ} \le x \le 90^{\circ}$.

[5 marks]

Question 6

Solve the equation

$$\frac{5\sin^2 x - 2}{\cos x} = 3 - \cos x$$

in the interval $-\pi \le x \le 2\pi$.

[6 marks]

Question 7a

(a) Use the fact that

$$3p^3 - (7 - 3\sqrt{3})p^2 - (20 + 7\sqrt{3})p - 20\sqrt{3} = (3p + 5)(p^2 + (\sqrt{3} - 4)p - 4\sqrt{3})$$

to fully factorise $3p^3 - (7 - 3\sqrt{3})p^2 - (20 + 7\sqrt{3})p - 20\sqrt{3}$.

[2 marks]

Question 7b

Two functions, f and g, are defined by

$$f(x) = 3 \tan^3 3x - (20 + 7\sqrt{3}) \tan 3x$$
 and $g(x) = (7 - 3\sqrt{3}) \tan^2 3x + 20\sqrt{3}$

for
$$-\frac{\pi}{6} \le x \le \frac{\pi}{3}$$
.

(b) Use an algebraic method along with your result from part (a) to determine the x-coordinates of the points of intersection of the curves y = f(x) and y = g(x).

Your solution should show clear algebraic working, and your answers should be given as exact values where possible.

[8 marks]

Question 8a

Let OAB be an isosceles triangle with OA = OB and $\widehat{AOB} = \theta$.

(a) If the length of line segment AB is denoted by p, and the area of triangle OAB is denoted by q, show that

$$\cos\theta = \frac{1-m}{1+m}$$

where

$$m = \frac{p^4}{16q^2}$$

[9 marks]

Question 8b

The diagram below shows circle sector OAB with centre 0 and angle at the centre $\widehat{AOB} = \theta$.

(b) Given that the length of chord AB is $2\sqrt{3}$ units, and that the area of triangle OAB is $\sqrt{3}$ units², find the area of sector OAB and the length of arc AB.

[5 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$