

1.2 Reacting Masses & Volumes

Question Paper

Course	DP IB Chemistry				
Section	1. Stoichiometric Relationships				
Topic	1.2 Reacting Masses & Volumes				
Difficulty	Hard				

Time allowed: 20

Score: /12

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

A periodic table is needed for this question

When a 1.00 g sample of carbon is burned in a limited supply of oxygen, 0.72 g of the carbon combusts to form CO₂ and 0.28 g of the carbon combusts to form CO

These gases were passed through excess NaOH(aq) which absorbs the CO₂, but not the CO. The remaining gas was then dried and collected.

Assuming that all gas volumes were taken at 25°C and 100 kPa pressure, what was the volume of gas at the end of the reaction? (Molar Volume of a gas at rtp = 24 dm³)

_	_		_				_
^		١.	n	1	_	~	-3
Α (U		U	,	d	ш	1

B 100 cm³

C 2.40 dm³

D 240 cm³

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2

A periodic table is needed for this question

Chicken eggs are made up of 5% by mass of egg shell. The average egg has a mass of 50 g.

Assume that chicken eggshell is pure calcium carbonate.

How many complete chicken's egg shells would need to neutralise 50 cm³ of 2.0 mol dm⁻³ ethanoic acid?

- **A** 4
- **B** 3
- **C** 2
- **D** 1

A periodic table is needed for this question

When a sample of potassium oxide, K_2O , is dissolved in 250 cm³ of distilled water, 25 cm³ of this solution is titrated against sulfuric acid with a concentration of 2.00 mol dm⁻³. Complete neutralisation takes place with 15 cm³ of sulfuric acid.

What is the mass of the original sample of potassium oxide dissolved in 250 cm³ of distilled water?

A
$$0.015 \times 250 \times 94.20$$

25

B
$$2.00 \times 0.015 \times 94.20$$

25

C
$$2.00 \times 0.015 \times 250 \times 94.20$$
 25

$$\begin{array}{c} \textbf{D} & \underline{2.00 \times 0.015 \times 25 \times 94.20} \\ \underline{250} & \end{array}$$

A periodic table is needed for this question

Iron and chromium can be made into an alloy called ferrochrome. Ferrochrome can be dissolved in dilute sulfuric acid to produce $FeSO_4$ and $Cr_2(SO_4)_3$. The $FeSO_4$ reacts with acidified $K_2Cr_2O_7$ as shown in this equation:

$$14H^{+} + 6Fe^{2+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_{2}O_{7}^{2-}$$

When 1.00 g of ferrochrome is dissolved in dilute sulfuric acid and then titrated, 13.1 cm³ of 0.100 mol dm⁻³ $K_2Cr_2O_7$ is needed for the complete reaction.

In the sample of ferrochrome, what is the percentage by mass of Fe?

A
$$13.1 \times 0.1 \times 6 \times 55.85 \times 100$$

 1000×1

B
$$13.1 \times 0.1 \times 6 \times 55.85$$

 1000

C
$$13.1 \times 0.1 \times 55.85 \times 100 \\ 1000 \times 1$$

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 5

10 cm³ of methane and 10 cm³ of ethane were sparked with an excess of oxygen. Once cooled, the remaining gas was passed through aqueous potassium hydroxide, which absorbs carbon dioxide.

Assume all measurements were taken at 25°C and 1 atm pressure.

What volume of gas is absorbed by the alkali?

- **A** 45 cm³
- **B** 30 cm³
- **C** 20 cm³
- **D** 10 cm³

[1 mark]

Question 6

A solution of Sn^{2+} ions will reduce MnO_4^{-} ions to Mn^{2+} ions when acidified. The Sn^{2+} ions are oxidised to Sn^{4+} ions in this reaction.

How many moles of Mn^{2+} ions are formed when a solution containing 18.96 g of $SnCl_2$ (M_r : 189.60) is added to an excess of acidified KMnO₄ solution?

- **A** 0.010
- **B** 0.015
- **C** 0.040
- **D** 0.050

Some fireworks can use the reaction between aluminium powder and anhydrous barium nitrate as a propellant. Metal oxides and nitrogen are the only products when this happens.

$$10AI + 3Ba(NO_3)_2 \rightarrow 5AI_2O_3 + 3BaO + 3N_2$$

When 0.783 g of anhydrous barium nitrate (M_r 261.35) reacts with an excess of aluminium what is the volume of nitrogen produced in cm³? (Molar volume of a gas = 24 dm³)

- A $0.783 \times 24 \times 3$ 261.35
- B $\frac{261.35 \times 24000}{0.783 \times 1000}$
- C $\frac{261.35}{0.783 \times 24000}$
- $\begin{array}{c} \textbf{D} & \underline{0.783 \times 24000} \\ & 261.35 \end{array}$

A periodic table is needed for this question

Excess acidified potassium dichromate(VI) was mixed with 2.76 g of ethanol. The reaction mixture was then boiled under reflux for one hour. Once the reaction had completed, the organic product was collected by distillation.

The yield of the product was 75.0%

What is the mass of the product collected?

A
$$2.76 \times 60.06$$
 46.08

B
$$\frac{75 \times 2.76 \times 60.06}{100 \times 46.08}$$

C
$$\underline{100 \times 2.76 \times 60.06}$$
 75×46.08

$$\begin{array}{c} \textbf{D} & \underline{75 \times 2.76 \times 46.08} \\ 100 \times 60.06 \end{array}$$

The concentration of calcium ions in a sample of water can be determined by using an ion-exchange column, shown in the diagram below:

A 50 cm³ sample of water containing dissolved calcium sulfate was passed through the ion-exchange resin.

Each calcium ion in the sample was exchanged for two hydrogen ions. The resulting acidic solution collected in the flask required 25 cm³ of 1.0 x 10⁻² mol dm⁻³ potassium hydroxide for complete neutralisation.

What was the concentration of the calcium sulfate in the original sample?

A
$$0.050 \times 1.0 \times 10^{-2}$$

2 × 0.025

$$\begin{array}{c} \textbf{B} & \underline{0.025 \times 1.0 \times 10^{-2}} \\ \hline 0.050 & \end{array}$$

C
$$\underline{25 \times 1.0 \times 10^{-2}}$$
 2×0.050

$$\begin{array}{c} \textbf{D} & \underline{0.025 \times 1.0 \times 10^{-2}} \\ \underline{2 \times 0.050} \end{array}$$

A tube of volume $0.3~\text{dm}^3$ is filled with a gas at 27~°C and 100kPa, the mass of the tube increases by $1.01\times10^{-3}~\text{kg}$.

Assume the gas is obeying the ideal gas laws.

If M_r is the Molar mass of the gas, what is the mass of this sample of gas?

A
$$\frac{100000 \times 0.0003}{8.314 \times 27 \times M_r}$$

B
$$\frac{100 \times 0.0003 \times M_r}{8.314 \times 300}$$

C
$$\frac{100000 \times 0.3 \times M_r}{8.314 \times 300}$$

$$\frac{100000 \times 0.0003 \times M_r}{8.314 \times 300}$$

The glass containers X and Y are connected by a closed valve.

X contains pure CO_2 gas at 25 °C and a pressure of 1 × 10⁵ Pa. Container Y has been evacuated prior to the experiment and has a volume three times bigger than container X.

During the experiment, the valve is opened, and the temperature of the whole apparatus is raised to 160 °C.

What is the final pressure in the system?

A
$$1 \times 10^5 \times 160$$
 4×25

B
$$\frac{4 \times 10^5 \times 433}{3 \times 298}$$

C
$$1 \times 10^5 \times 433$$

 3×298

$$\begin{array}{cc} \textbf{D} & \underline{1 \times 10^5 \times 433} \\ & \underline{4 \times 298} \end{array}$$

lodine is a shiny, black solid. Solid iodine sublimes easily when heated to produce a purple vapour.

A block of solid iodine is put into a closed container and completely sublimed to produce 1.3 dm³ of iodine vapour. It is then kept at a constant temperature and pressure of 100kPa.

The empty container had a mass of 3.22 g and when iodine was added the mass increased to 9.57 g. (M_r I_2 = 253.8)

If iodine vapour acts as an ideal gas, what is the approximate temperature of the iodine vapour?

A
$$\underline{(9.57 - 3.22) \times 100000 \times 0.0013}$$

 $\underline{253.8 \times 8.314}$

B
$$\underline{253.8 \times 100000 \times 0.0013}$$

 $(9.57 - 3.22) \times 8.314$

C
$$\underline{253.8 \times 100000 \times 1.3}$$
 $\underline{(9.57 - 3.22) \times 8.314}$