

11.1 Spectroscopic Identification

Question Paper

Course	DP IB Chemistry
Section	11. Measurements & Data Processes
Topic	11.1 Spectroscopic Identification
Difficulty	Easy

Time allowed: 20

Score: /10

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

Which of the following statements about propanal, CH₃CH₂CHO, and propanone, CH₃COCH₃ is **not** correct?

The compounds have:

- A molecular ion peaks at different mass to charge ratios
- **B** different fragmentation patterns in the mass spectrum
- **C** absorption in the infrared spectrum due to the carbonyl group
- **D** a different fingerprint region in the infrared spectrum

[1 mark]

Question 2

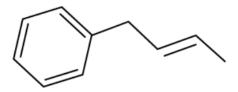
Nitrogen trichloride has the formula NCI_3 . A sample was found to contain only ¹⁴N, and chlorine atoms with mass numbers 35 and 37.

Which of the following is an **incorrect** ion and mass/charge ratio responsible for the molecular ion peaks found in the mass spectrum of nitrogen trichloride?

	ion	m/e
Α	N(³⁵ CI) ₃ +	119
В	N(³⁵ CI) ₂ ³⁷ CI ⁺	121
С	N ³⁵ CI(³⁷ CI) ₂ ⁺	123
D	N(³⁷ CI) ₂ ⁺	125

[1 mark]

Question 3


Which of the following cannot be obtained from an infrared spectrum?

- A the molecular mass
- B the presence of C=O bonds
- **C** the presence of O-H bonds
- **D** the identity of a compound through comparison with other spectra

[1 mark]

Question 4

What is the index of hydrogen deficiency (IHD) for the molecule shown below?

- **A** 1
- **B** 2
- **C** 4
- **D** 5

Question 5

What information can be determined from the infrared spectrum of a molecule?

- A The number of hydrogens
- **B** The number of hydrogen environments
- C The type of bonds present
- **D** The relative molecular mass

[1 mark]

Question 6

Which of the following bonds will produce strong absorptions in the infrared part of the electromagnetic spectrum?

- I. C-N
- II. O=O
- III. C=O
- A I and II only
- B I and III only
- C II and III only
- D I, II and III

Question 7

Which of the following is true about the fingerprint region in the IR spectrum of alcohols?

- A The fingerprint region is where single bonds can be identified in the IR spectrum
- B The fingerprint region is unique to every molecule
- C The fingerprint region does not provide useful information about molecules
- **D** A functional group can be identified from the fingerprint region

[1 mark]

Question 8

Which of the following statements is correct about spectroscopic techniques for organic molecules?

- A Information about bond vibrations can be deduced from mass spectroscopy
- B The values of carbon–hydrogen bond lengths can be found from ¹H NMR spectroscopy
- **C** The number of hydrogen atoms can be determined from infrared spectroscopy
- D Information about molecular structure can be found from mass spectroscopy

Question 9

In the ¹H NMR spectrum of 3-methylbutan-1-ol what is the ratio of the peak areas under each signal?

- A 6:1:2:2:1
- **B** 3:3:1:5:1
- **C** 6:1:5:1
- **D** 3:3:1:2:3

[1 mark]

Question 10

Which of the following types of spectroscopic identification will involve bond fission in organic molecules?

- A Nuclear magnetic spectroscopy
- B Infrared spectroscopy
- C Mass spectrometry
- D X-ray crystallography