

3.9 Vector Properties

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.9 Vector Properties
Difficulty	Very Hard

Time allowed:	100
Score:	/80
Percentage:	/100

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

a) Given |a| = 6, |b| = 2 and $a \times b = \begin{pmatrix} -5 \\ 2 \\ 7 \end{pmatrix}$, find the possible values of $\mathbf{a} \cdot \mathbf{b}$.

[4 marks]

Question 1b

Consider a third vector \mathbf{c} , where |c| = 5.

(b)

Given that the angle between a and c is $\frac{\pi}{3}$, find $|a \times (b + c)|$.

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2a

The points A and B have position vectors a and b respectively.

$$|a| = \sqrt{35}, b = 2i - 2j + k, a \times b = \begin{pmatrix} 7 \\ -11 \\ 8 \end{pmatrix}$$
 and θ is the angle between a and b .

(a) Find $\cos \theta$.

[4 marks]

Question 2b

	(28)	١
A third point C is located such that its position vector $c =$	-44	
	32)

(b) Show that $c = 4a \times b$.

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3

ABCDE is a pentagon, where A(0,4, -1), D(-1,7,3), $\overrightarrow{AB} = \begin{pmatrix} -4 \\ 2 \\ 5 \end{pmatrix}$ and $\overrightarrow{CD} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$.

Given that $\overrightarrow{BD} = \overrightarrow{AE}$ find the area of triangle \overrightarrow{BCD} as a percentage of the total area of the pentagon.

[8 marks]

Question 4a

Three points, A(-3, -1), B(2,2) and C, are located on a straight line where $\overrightarrow{AC} = \lambda \overrightarrow{AB}$. A fourth point D, is located such that \overrightarrow{DB} is perpendicular to \overrightarrow{OB} and $|DB| = 2\sqrt{22}$.

(a) Find $D\widehat{B}C$.

[3 marks]

Question 4b

(b) Given that the area of the triangle BCD = 53.1 units² correct to 3 significant figures, find λ .

[4 marks]

Question 5

Consider a regular hexagon ABCDEF with sides of length $9\sqrt{2}$ units. The position vectors of A and E are a = -11i - 4j + 5k and e = 3i - 3j - 12k respectively.

Given that the coordinates of F are (r,t,t), where $r,t \in \mathbb{Z}$, $r \neq 0$. find the value of r and t.

[9 marks]

Question 6a

ABCD is a parallelogram defined by the vectors $\overrightarrow{AB} = p$ and $\overrightarrow{AD} = q$, where $p = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and $q = \begin{pmatrix} 2t+2 \\ t \end{pmatrix}$.

(a)

Given that the angle \widehat{BAD} is acute, find the range of values for t.

[3 marks]

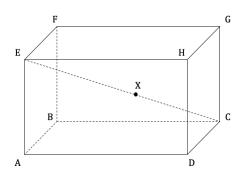
Question 6b

 \overrightarrow{AB} is enlarged by a factor of k.

(b) Show that $kp \cdot q = k(p \cdot q)$.

[3 marks]

Question 6c


(c) Given that k = 7, find the range of possible values for the area of the enlarged parallelogram.

[4 marks]

Question 7

Consider the cuboid ABCDEFGH as shown in the diagram below. The position vectors of A, C, D and E are a = -5i + 2j - 4k, c = 2i + 3j + k, d = -i + j and e = -3i + j + 2k respectively.

X is a point located on the line [EC] such that $\vec{EX} = \lambda \vec{EC}$.

Find the shortest length |HX| .

[7 marks]

Question 8a

(a)

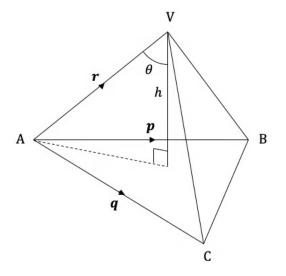
Show that for any two vectors a and b, $|a \times b|^2 - (a \cdot b)^2 = |a|^2 |b|^2 \cos 2\theta$

[5 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 8b

(b)


Hence show that when $\sin \theta = \frac{\sqrt{2}}{2}$, $|a \times b| = a \cdot b$.

[2 marks]

Question 9a

Consider a tetrahedron ABCV where $\overrightarrow{AB} = p$, $\overrightarrow{AC} = q$ and $\overrightarrow{AV} = r$. The perpendicular height, h, of the tetrahedron from the base ABC makes an angle of θ with r.

This information is shown in the diagram below.

(a) Find an expression for the volume of the tetrahedron in terms of p,q and r.

[4 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 9b

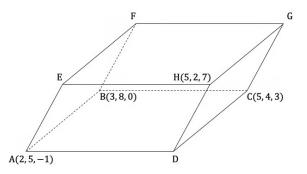
(b)

Find the volume of the tetrahedron when $p = \begin{pmatrix} 4 \\ 5 \\ -2 \end{pmatrix}, q = \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix}, r = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$

[3 marks]

Question 9c

(c) Hence find the shortest distance between vertex A and its opposite face.


[4 marks]

FaveMyExams Head to <u>savemyexams.co.uk</u> for more a we some resources

Question 10

Consider a parallelepiped ABCDEFGH with vertices A(2,5, -1), B(3,8,0), C(5,4,3) and H(5,2,7) as seen in the diagram below.

By first finding an expression for the perpendicular height of the object, find the volume of the parallelepiped.

[8 marks]