

# 2.6 Transformations of Graphs

## **Question Paper**

| Course     | DP IB Maths                   |
|------------|-------------------------------|
| Section    | 2. Functions                  |
| Topic      | 2.6 Transformations of Graphs |
| Difficulty | Hard                          |

Time allowed: 120

Score: /93

Percentage: /100

#### Question la

Let 
$$f(x) = 2(x+4)^3$$
 and  $g(x) = x^3$ , for  $x \in \mathbb{R}$ .

(a) Give a full geometric description of the two individual transformations that can be combined to obtain the graph of f from the graph of g.

[2 marks]

#### Question 1b

The graph of f is translated by the vector  $\begin{pmatrix} 2 \\ -5 \end{pmatrix}$  to give the graph of h.

Now consider the graph of h as a transformation of the graph of g. The point A on the graph of h corresponds to the point (2, 8) on the graph of g.

(b) Find the coordinates of A.

#### Question 2a

Let f and g be functions such that g(x) = 2f(x-1) + 2, for  $x \in \mathbb{R}$ .

The transformation that maps the graph of f onto the graph of g may be represented as a combination of two simpler transformations:

a vertical stretch by a factor of v,

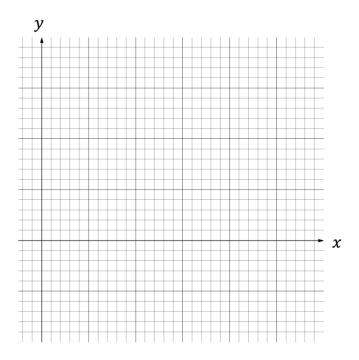
followed by

a translation by the vector  $\binom{a}{b}$ .

- (a) Write down the values of
  - (i) *v*
  - (ii) a
  - (iii) *b*.

[3 marks]

#### Question 2b


The point A(3,4) on the graph of f is mapped to point B on the graph of g.

(b) Find the coordinates of B.

#### Question 3a

Let 
$$f(x) = x^2 - 9$$
, for  $x \in \mathbb{R}$ .

(a) Sketch the graph of y = f(x) on the following grid in the interval  $0 \le x \le 5$ . Use an appropriate scale and clearly label any intersections the graph makes with the coordinate axes.



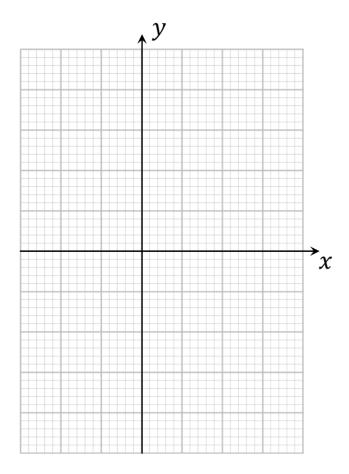
#### Question 3b

(b) Find  $(f \circ f)(2)$ .

[2 marks]

#### Question 3c

The function g is obtained when the graph of f is translated by the vector  $\binom{2}{5}$ .


(c) Sketch the graph of g(x) on the same grid above, also for the interval  $0 \le x \le 5$ . Clearly label any intersections the graph makes with the coordinate axes and label the graph in the form  $g(x) = ax^2 + bx + c$  where a, b and c are constants to be determined.

[5 marks]

#### Question 4a

Let 
$$f(x) = 1.1e^{x-1} - 4$$
, for  $-2 \le x \le 3$ .

(a) Sketch the graph of y = f(x) on the grid below, clearly labelling any intersections the graph makes with the coordinate axes.



## **Question 4b**

The graph of f is reflected in the x-axis and then translated by the vector  $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$  to obtain the graph of y = g(x).

(b) Find an expression for g(x).

[2 marks]

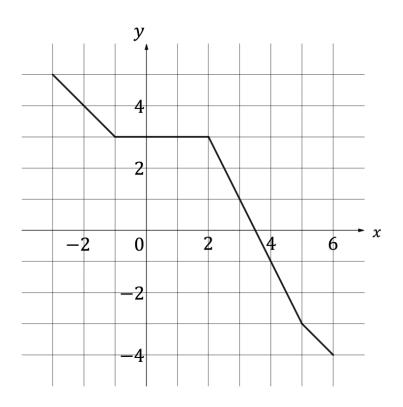
#### Question 5

The function f is defined by

$$f(x) = \begin{cases} 1 + 2x & \text{if } x \le 2\\ x^2 - 2x + 5 & \text{if } x > 2 \end{cases}$$

The graph of the function g is obtained by applying the following transformations to the graph of f:

a translation by the vector  $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ ,


followed by

a reflection in the x-axis.

Find an expression for g(x).

## Question 6a

The following diagram shows the graph of y = f(x),  $-3 \le x \le 6$ .



- (a) Write down the value of
  - (i) f(-2)
  - (ii)  $f^{-1}(1)$ .

[2 marks]

## Question 6b

(b) Find the value of  $(f \circ f)(0)$ .

[1 mark]

#### Question 6c

(c) Given that g(x) = f(x + 5) - 5, find the domain and range of g.

[2 marks]

#### Question 7a

Let  $v(t) = 4t^2 + 64$ , where t > 0.

The graph of a function g is obtained when the graph of v is transformed by

a vertical stretch by a factor of  $\frac{1}{8}$ ,

followed by

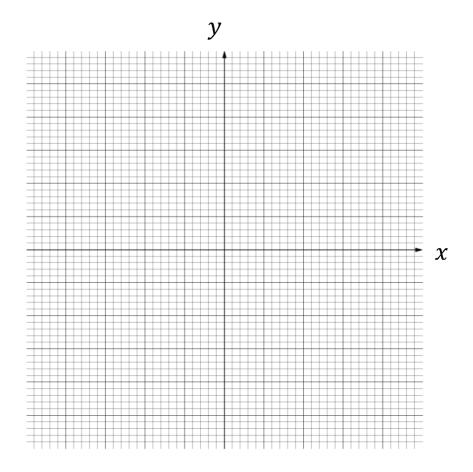
a translation by the vector  $\binom{8}{3}$ .

(a) Find g(t), giving your answer in the form  $at^2 + bt + c$ .

#### $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

## **Question 7b**

A particle moves along a straight line so that its velocity in  $ms^{-1}$ , at time t seconds, is given by g(t).


(b) Find the value of t when the particle's velocity is 11 ms<sup>-1</sup>.

[2 marks]

#### Question 8a

Let 
$$f(x) = 2x^2 - 6x$$
, for  $x \in \mathbb{R}$ .

(a) Sketch the graph of y = f(x) on the grid below, clearly labelling the vertex as well as any intersections the graph makes with the coordinate axes.



#### **Question 8b**

The graph of a function g is obtained from the graph of f by a reflection in the y-axis, followed by a horizontal stretch with scale factor  $\frac{1}{2}$ .

(b) Find an expression for g(x), giving your answer in the form  $g(x) = a(x-h)^2 + k$ .

[5 marks]

## Question 9a

Let 
$$f(x) = 2x^2 + bx + 8$$
, for  $x \in \mathbb{R}$ , where  $b \in \mathbb{Z}$ .

Given that the equation f(x) = 0 has two equal roots, and that b < 0,

(a) find the value of b.

#### $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

#### **Question 9b**

(b) Find the coordinates of the vertex of the graph of f.

[2 marks]

## Question 9c

The graph of a function g is obtained from the graph of f by a reflection in the y-axis, followed by a horizontal stretch with scale factor 2.

(c) Find an expression for g(x) and state the coordinates of the y-intercept of the graph of g.

## Question 10a

$$Let f(x) = 2x^2 - 12x + 10$$

- (a) For the graph of f, find
  - (i) the x-intercepts
  - (ii) the *y*-intercept
  - (iii) the coordinates of the vertex.

[5 marks]

#### **Question 10b**

The graph of a function g is obtained from the graph of f by a reflection in the x-axis followed by a translation by the vector  $\binom{1}{6}$ .

(b) Find g(x), giving your answer in the form  $g(x) = a(x - h)^2 + k$ .

#### Question 11a

Consider the functions f and g defined by  $f(x) = \ln x$  and  $g(x) = \ln(2x + 5)$ , where each function has the largest possible valid domain.

(a) Write down the domain of g.

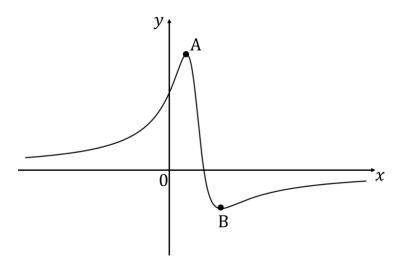
[1 mark]

#### Question 11b

The graph of f can be transformed onto the graph of g by a single translation and a single stretch, both of which are parallel to one of the coordinate axes.

- (b) Describe the sequence of transformations in the case where:
  - (i) the translation occurs first.
  - (ii) the stretch occurs first.

Head to <u>savemy exams.co.uk</u> for more awe some resources


## Question 11c

The graph of f can be also transformed onto the graph of g by a single translation using the vector  $\binom{a}{b}$ .

(c) Find the exact values of a and b.

## Question 12a

The graph of a function f is shown below. The points A(1,6) and B(3,-3) lie on the graph and are a local maximum and a local minimum respectively. The x-axis is an asymptote to the graph.



(a) On separate sets of axes, sketch the graphs of:

(i) 
$$y = 2(f(x) + 3)$$
.

(ii) 
$$y = f(2x + 3)$$
.

In each case give the coordinates of the points onto which A and B are mapped, and state the equation of the asymptote.

[6 marks]

## Question 12b

The graph of y = f(x) is stretched horizontally by a scale factor of k then translated by the vector  $\binom{a}{b}$  to map it onto the graph of y = f(5x + 10) + 4.

- (b) (i) Find the values of a, b and k.
  - (ii) Find the coordinates of the points onto which A and B are mapped.

[5 marks]

## Question 13a

Consider the function f defined by  $f(x) = 0.4e^{x+1} - 3$ ,  $-6 \le x \le 3$ .

- (a) Find the coordinates of
  - (i) the x-intercept
  - (ii) the *y*-intercept

of the graph of y = f(x).

[2 marks]

#### **Question 13b**

(b) Sketch the graph of y = f(x).

[2 marks]

## Question 13c

The graph of f is first reflected in the y-axis and then translated by the vector  $\binom{2}{1}$  to obtain the graph of a function g.

(c) Find an expression for g(x).

[2 marks]



 $Head to \underline{save my exams.co.uk} for more a we some resources$