

9.1 Simple Harmonic Motion

Question Paper

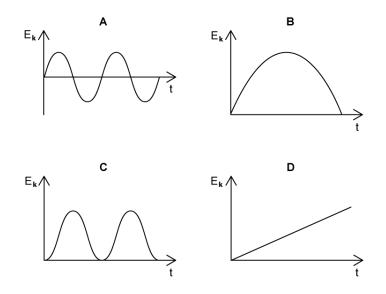
Course	DP IB Physics	
Section	9. Wave Phenomena (HL only)	
Торіс	9.1 Simple Harmonic Motion	
Difficulty	Easy	

Time allowed:	20
Score:	/10
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Which equation is used for calculating the displacement as a function of time for an oscillator that begins its oscillation from the equilibrium position?


A.
$$x = x_0 \sin \omega t$$

B. $v = \omega x_0 \cos \omega t$
C. $a = -\omega^2 x_0 \sin \omega t$

 $D.a = -\omega x$

[1 mark]

Question 2

Which graph correctly shows how the kinetic energy of an oscillator varies as a function of time through one complete oscillation?

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 3

Which equation correctly shows the kinetic energy-displacement relation for simple harmonic motion?

A.
$$K_E = \frac{1}{2}mv^2$$

B. $E_T = \frac{1}{2}m\omega^2 x_0^2$
C. $E_P = \frac{1}{2}k\Delta x^2$
D. $E_K = \frac{1}{2}m\omega^2 (x_0^2 - x^2)$

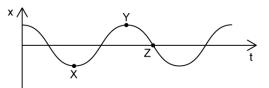
[1mark]

Question 4

The defining equation of SHM describes the relationship between acceleration, a, angular frequency, ω , and displacement, x, from the equilibrium position:

 $a = -\omega^2 x$

Which value correctly shows the resulting acceleration if the angular frequency was doubled?


A. -4*a*

- $\mathsf{B}_{\cdot}\frac{1}{4}a$
- C.2a
- D.4*a*

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5

The graph shows the displacement over time of a simple pendulum oscillating in simple harmonic motion.

What is the potential energy of the pendulum at points X, Y and Z?

	X	Y	Z
Α.	Мах	Zero	Max
В.	Zero	Max	Zero
C.	Max	Max	Zero
D.	Zero	Zero	Мах

[1mark]

Question 6

A spring loaded with mass *m* oscillates with simple harmonic motion. The amplitude of the motion is A and the spring has total energy *E*.

What is the total energy of the spring when both the mass and the amplitude are doubled?

 $A.E_T$

В. 2*Е* т

 $C.4E_T$

 $D.8E_{T}$

Headtosavemyexams.co.uk for more awesome resources

Question 7

A simple pendulum undergoes simple harmonic motion. The kinetic energy of the pendulum is at a maximum at the equilibrium position.

How many times during one oscillation is the kinetic energy of the pendulum equal to its gravitational potential energy?

A.1 B.2 C.3 D.4

[1 mark]

Question 8

A mass with mass, *m*, is attached to a spring with a spring constant, *k*, and oscillates in simple harmonic motion with a period, *T*.

A new spring is introduced with a spring constant of 4k. How does this affect the period of the oscillation?

A.
$$\frac{1}{4}T$$

B. $\frac{1}{2}T$
C. $2T$
D. $4T$

[1mark]

Question 9

A small ball is attached to a thread of length *I*, and set to oscillate isochronously.

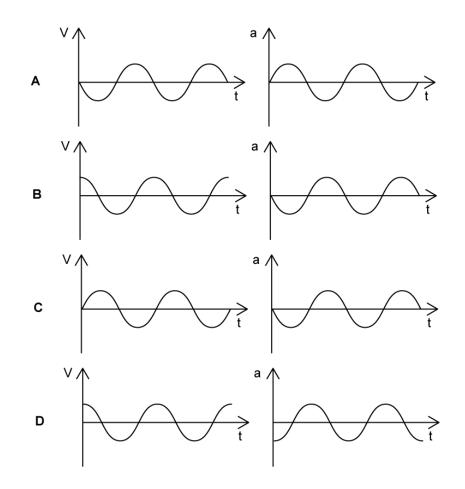
If the length of the thread is reduced by 10%, what effect will this have on the period, T, of the oscillation?

A.0.1 T

B.0.3*T*

C.0.6T

D.0.9*T*



Question 10

A particle oscillates in simple harmonic motion. The particle's displacement over time is shown in the following graph.

Which graphs are the correct velocity-time and acceleration-time graphs for this particle?

^{[1}mark]