4.1 Oscillations

Question Paper

Course	DP IB Physics
Section	4. Waves
Topic	4.1 Oscillations
Difficulty	Easy

Time allowed: 20

Score: /10

Percentage: /100

Head to <u>savemyexams.co.uk</u> for more awe some resources

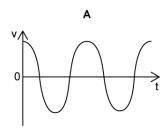
Question 1

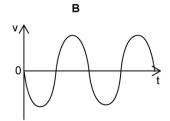
Identify the incorrect statement about the displacement of an object oscillating in simple harmonic motion.

- A. Displacement is a vector quantity
- B. Displacement and velocity act in opposite directions
- C. Displacement is proportional to the restoring force
- D. Displacement is proportional to acceleration

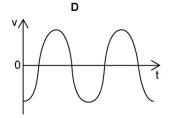
[1 mark]

Question 2


 $Identify \,the \,true\, statement\, about\, phase\, difference.$


- A. Phase difference must be calculated from the crest of one wave to the crest on another wave
- B. When the same points on two different waves align, the waves are in anti-phase
- C. Phase difference is a measure of how much one point on a wave is in front or behind a different point on another wave
- D. Waves in phase have a phase difference of 2π radians

[1 mark]


Question 3

Select the graph that shows the oscillation beginning at positive amplitude x_0 .

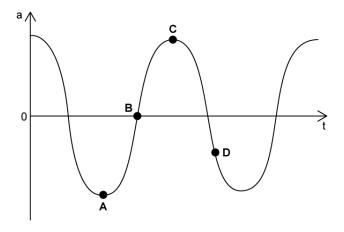
Question 4

The total energy E_T in system in simple harmonic motion reflects the energy transfers between the kinetic energy E_K store and the potential energy E_P store.

 $Identify the \ correct \ equation \ for \ the \ total \ energy \ of \ a \ system \ in \ simple \ harmonic \ motion.$

A.
$$E_T = E_P - E_K$$

B.
$$E_T = E_P \times E_K$$


$$C.E_{T} = \frac{E_{K}}{E_{p}}$$

$$D. E_T = E_P + E_K$$

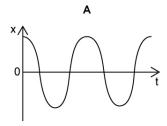
[1 mark]

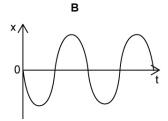
Question 5

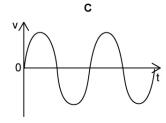
Select the position on the acceleration-time graph where displacement x = 0

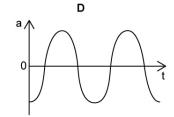
Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 6


 $Identify the \, statement \, that \, is \, not \, a \, condition \, of \, simple \, harmonic \, motion.$


- A. The restoring force is directed toward the amplitude x_0
- B. Acceleration is directed toward the equilibrium position
- C. The oscillations are isochronous
- D. The magnitude of the restoring force is proportional to the displacement


[1 mark]


Question 7

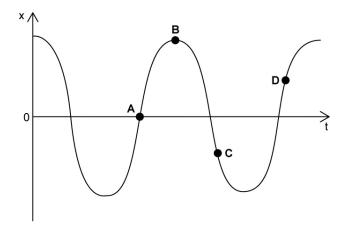
Choose the graph that shows an oscillation beginning at equilibrium.

Question 8

Identify the correct equation for time period T with respect to frequency f.

$$A. T = \frac{1}{2} \pi f$$

$$B. T = \frac{1}{f}$$


$$C.T = \frac{1}{2}f$$

$$D.T = f$$

[1 mark]

Question 9

Select the position on the displacement-time graph that shows when the velocity is zero.

 $Head to \underline{savemy exams.co.uk} for more awe some resources\\$

Question 10

As a mass-spring system oscillates in simple harmonic motion, the restoring force F is proportional to the displacement x.

$$F = -kx$$

Choose the line that shows the correct units for each quantity.

	Force F	Spring constant k	Displacement x
Α.	N	N m ⁻¹	m
В.	Nm	N	m ²
C.	N m ⁻¹	Nm	ml
D.	N	N kg ⁻¹	m