

13.1 Transition Metals

Question Paper

Course	DP IB Chemistry
Section	13. The Periodic Table- Transition Metals (HL only)
Торіс	13.1 Transition Metals
Difficulty	Medium

Time allowed:	10
Score:	/5
Percentage:	/100

Question 1

In which complexes does iron have an oxidation state of +3?

- I. [Fe(H₂O)₆]³⁺ II. [Fe(H₂O)₅(CN)]²⁺
- III. $[Fe(CN)_{6}]^{3-1}$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1mark]

Question 2

Which complex is likely to be colourless?

- A. [Zn(H₂O)₆]Cl₂
- B. [NH₄]₂[Fe(H₂O)₆][SO₄]₂
- $C.K_3[Co(CN)_6]$
- D. [Ni(NH₃)₆][BF₄]₂

[1mark]

Question 3

Part of the spectrochemical series is shown.

 $I^{-} < CI^{-} < H_2O < NH_3$

Which statement can be correctly deduced from the series?

- A. H_2O increases the p-d separation more than $CI^{\scriptscriptstyle -}$
- B. H_2O increases the d-d separation more than $CI^{\scriptscriptstyle -}$
- C. A complex with NH_3 is more likely to be blue than that with CI^-
- D. Complexes with water are always blue

[1 mark]

Question 4

Ammonia is a stronger ligand than water. Which statement is correct when concentrated aqueous ammonia solution is added to dilute aqueous copper(II) sulfate solution?

- A. The d-orbitals in the copperion split.
- B. There is a smaller splitting of the d-orbitals.
- C. Ammonia replaces water as a ligand.
- D. The colour of the solution fades.

[1mark]

Question 5

Cobalt forms the complex $[Co(NH_3)_5CI]^{2+}$. Which statements are correct for this complex?

- I. The cobalt ion acts as a Lewis acid.
- II. The cobalt ion has an oxidation state of +2.
- III. There are 90° bond angles between the cobalt ion and the ligands.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1mark]

Page 3 of 3