

2.4 Functions Toolkit

Question Paper

Course	DP IB Maths
Section	2. Functions
Торіс	2.4 Functions Toolkit
Difficulty	Very Hard

Time allowed:	100
Score:	/80
Percentage:	/100

Question la

The functions *f* and *g* are defined such that $f(x) = 9x - 3x^2 - 3$ and $g(x) = -\frac{66+2x}{3}$, both for $x \in \mathbb{R}$.

(a) Find $(g \circ f)(x)$, giving your answer in the form $(g \circ f)(x) = a(x - p)(x - q)$.

[3 marks]

Question 1b

(b) Hence, or otherwise, find the *x*-intercepts of the graph of $y = (g \circ f)(x)$.

[1 mark]

Question lc

Let h(x) = 1 - 2x.

(c) Find the distance between the *y*-intercept of the graph of $y = (f \circ h)(x)$ and the positive *x*-intercept of the graph of $y = (g \circ f)(x)$. Your answer should be given as an exact value.

Question 2a

Let the function *f* be such that $f(x) = \sqrt{5x^2 - 11x + 6.05}$.

It is given that the inverse function f^{-1} exists, and that the domain of f is as large as possible.

(a) Suggest two possible domains for *f* and write down their corresponding ranges.

[4 marks]

Question 2b

(b) Find what the value of $f^{-1}(\sqrt{22.05})$ would be for each of the domains suggested in part (a).

Question 3a

Let $f(x) = \sqrt{-3x^2 + 8x + 16}$.

(a) Write down the coordinates of the *y*-intercept of the graph of y = f(x).

[3 marks]

Question 3b

Given that f has the largest possible valid domain,

(b) find the domain and range of f.

[3 marks]

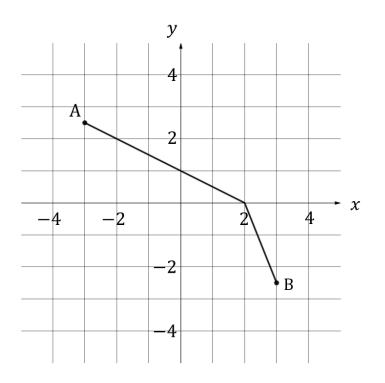
Question 4a

Let the function *f* be defined by $f(x) = (2x^2 - 5x - 12)^{-\frac{1}{2}} - k$, where *k* is a constant and where *f* has the largest possible valid domain.

(a) Find the domain of f.

Question 4b

(b) Given that as x gets large f(x) tends towards the value -7, find the value of k.


[1 mark]

Question 4c

(c) Write down the equations of any vertical and/or horizontal asymptotes on the graph of y = f(x).

Question 5a

The following diagram shows the graph of y = f(x), for a function f that has the domain $-3 \le x \le 3$. Point A has coordinates (-3, 2.5) and point B has coordinates (3, -2.5). The x-intercept of the function is (2, 0) as shown.

f can be written as a piecewise function, where each of the two pieces is a linear function and where the domain of the first function is $-3 \le x \le 2$.

(a) Write down f(x) as a piecewise function.

[4 marks]

Question 5b

(b) Sketch the graph of $y = f^{-1}(x)$ on the same grid above.

[3 marks]

Question 6a

Consider the function *h* defined by $h(x) = -4x^2 + 24x + 8$, $x \in \mathbb{R}$.

- (a) (i) Show that $-4(x-3)^2 = -4x^2 + 24x 36$.
 - (ii) Hence show that $h(x) = -4(x-3)^2 + 44$.

[3 marks]

Question 6b

(b) Given that $f(x) = (x - 3)^2$ and that $(g \circ f)(x) = h(x)$, find a possible expression for g(x).

Question 7a

The functions *f* and *g* are defined such that $f(x) = \frac{3-2x}{5}$ and g(x) = 4x - 7, both for $x \in \mathbb{R}$.

- (a) Giving your answers in the form y = mx + c, find
 - (i) $(g \circ f)(x)$
 - (ii) $(f \circ g)(x)$.

[4 marks]

Question 7b

(b) Describe a single transformation that would map the graph of $y = (g \circ f)(x)$ onto the graph of $y = (f \circ g)(x)$.

Question 7c

(c) Given that $(g \circ f)^{-1}(p) = 2$, find the value of p.

[3 marks]

Question 8a

Let the functions *f* and *g* be defined by $f(x) = \frac{9}{4}x^2 - 1$ and $g(x) = x^2 - 2$, both for $x \ge 0$.

(a) Find

- (i) $f^{-1}(x)$
- (ii) $g^{-1}(x)$.

[2 marks]

Question 8b

(b) Find $(f \circ g)(x)$ in the form $ax^4 + bx^2 + c$.

Question 8c

(c) Solve the equation $(f \circ g)(x) = 0$.

[3 marks]

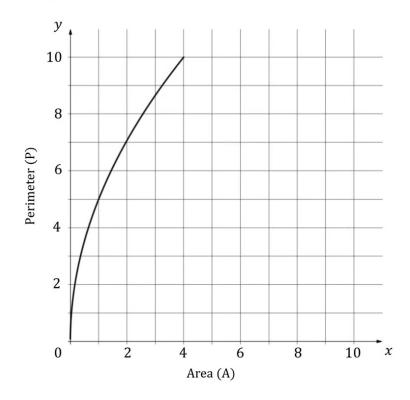
Question 9a

A rectangle has length l = 4x and width w = x.

(a) Find an expression for

- (i) the perimeter of the rectangle, P, in terms of *x*.
- (ii) the area of the rectangle, A, in terms of *x*.

[2 marks]


Question 9b

(b)Show that $P(A) = 5\sqrt{A}$.

Question 9c

The graph of the function P, for $0 \le A \le 4$, is shown below.

(c) On the grid above, draw the graph of the inverse function P^{-1} .

[3 marks]

Page 11 of 15

Question 10a

Consider the function f defined by $f(x) = x^2 - 6x + 10$, $x \le p$, where p is the largest value such that f has an inverse.

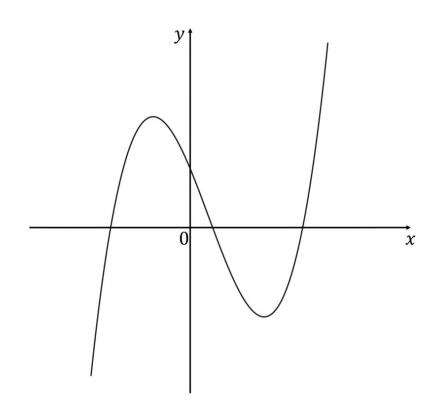
- (a) (i) Find the value of *p*.
 - (ii) On the same set of axes, sketch the graphs of f and f^{-1} .
 - (iii) Write down the domain and range of f^{-1} .

[5 marks]

Question 10b

(b) Find the inverse function f^{-1} .

Question 10c


Let the function *g* be defined by $g(x) = x^2 - 6x + 10$, $x \in \mathbb{R}$.

- (c) (i) Solve $(g \circ f)(x) = 2$.
 - (ii) Solve $(f \circ g)(x) = 2$.

[4 marks]

Question 11a

A part of the graph of the function $f(x) = 2x^3 - 3x^2 - 12x + 8$, $x \in \mathbb{R}$ is shown below.

(a) Explain why *f* does not have an inverse.

[1 mark]

Question 11b

The domain of *f* is now restricted to $a \le x \le b$ where a < 0 and b > 0. *a* and *b* are chosen so that *f* has an inverse and the interval [a, b] is as large as possible.

(b) Find the domain and range of f^{-1} .

[6 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 15 of 15