

3.11 Vector Planes

Question Paper

Course	DPIBMaths
Section	3. Geometry & Trigonometry
Торіс	3.11 Vector Planes
Difficulty	Hard

Time allowed:	110
Score:	/88
Percentage:	/100

Question la

The points A(2, 1, 0), B(-1, 4, 1) and C(1, 0, 3) lie on a plane Π .

a)

Find an equation for Π in the form ax + by + cz = d where $a, b, c, d \in \mathbb{Z}$.

[7 marks]

Question 1b

(b) Determine whether the point D(-2, 2, 5) lies on Π .

[2 marks]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 2a

The plane
$$\Pi$$
 has equation $r \cdot \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} = 8.$
The line L has equation $r = \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}.$

The plane \varPi and the line L intersect at the point X.

(a) Find the coordinates of X.

[3 marks]

Question 2b

(b) Find the acute angle, in degrees, between the line L and the plane $\varPi.$

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 2c

The point P(1,-3, 1) lies on the line L.

(c) Find the exact value of PX.

[2 marks]

Question 2d

(d) Hence find the shortest distance between the point P and the plane $\varPi.$

[2 marks]

Question 3

Find the acute angle, in radians, between the two planes Π_1 and Π_2 which can be defined by the equations:

$$\Pi_1 : 5x - 2y + z = 19$$
$$\Pi_2 : \mathbf{r} \cdot \begin{pmatrix} 3\\5\\-2 \end{pmatrix} = 20.$$

[5 marks]

Question 4a

The line *L* given by the Cartesian equation $\frac{x-1}{2} = \frac{3-y}{3} = z+2$ lies on the plane Π . The point P(4, 0, -3) also lies on Π .

(a)

Show that the vectors $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ are parallel to Π .

[3 marks]

Question 4b

(b) Hence find the Cartesian equation of \varPi .

Save My Exams

${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

Question 5a

Consider the plane Π defined by the Cartesian equation 2x - 5y + 3z = 19 and the line L_1 defined by the vector equation

$$\mathbf{r} = \begin{pmatrix} 7\\ -4\\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 4\\ 1\\ -1 \end{pmatrix}.$$

(a) Show that the line L_1 is parallel to the plane \varPi but does not lie in the plane.

[3 marks]

Question 5b

The line $L_2^{}$ is perpendicular to the plane \varPi and passes through the point P(7, -4, 9) .

(b)

Find a vector equation of the line L_2 .

[2 marks]

Question 5c

(c) Find the coordinates of the point where the line L_2 and the plane \varPi intersect.

Question 5d

(d) Hence find the shortest distance between the line L_1 and the plane $\varPi.$

[2 marks]

Question 6a

 $Consider the two planes \ defined \ by \ the \ Cartesian \ equations:$

$$\Pi_1 : 2x + y + 2z = 8$$
$$\Pi_2 : 3x - y - 2z = 7.$$

The line L is the intersection of the planes \varPi_1 and $\varPi_2.$

(a)

Show that the line *L* is parallel to the vector $\begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$.

Question 6b

The point P(a, 0, b) lies on both planes.

(b)
(i)
Find the values of *a* and *b*.
(ii)
Hence write down a vector equation of the line *L*.

[3 marks]

Question 6c

A third plane Π_3 has the Cartesian equation 2x - 3y + z = 14.

(c)

Use algebra to show that the three planes intersect at a unique point Q and find the coordinates of Q.

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 7a

Consider the three planes with Cartesian equations:

$$\Pi_{1} : 2x + 3y + kz = 11$$
$$\Pi_{2} : 3x + y - z = -8$$
$$\Pi_{3} : x - 5y + 2z = 15$$

where k is a real constant.

(a)

In the case when the three planes do not intersect at a unique point, find the value of k and state the geometrical relationship between the three planes.

[6 marks]

Question 7b

(b)

In the case when k = 0 find the coordinates of the point of intersection between the three planes.

[2 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 8a

Two parallel planes are defined by the equations:

$$\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 7\\ -4\\ a \end{pmatrix} = 113, \ a \in \mathbb{R},$$
$$\Pi_2: \mathbf{r} = \begin{pmatrix} 11\\ -3\\ 5 \end{pmatrix} + \lambda \begin{pmatrix} b\\ 4\\ -1 \end{pmatrix} + \mu \begin{pmatrix} 7\\ -2\\ -3 \end{pmatrix}, \ b \in \mathbb{R}.$$

(a) Show that a = 19 and find the value of b.

[3 marks]

Question 8b

(b)

Write down a vector equation of the line L that is perpendicular to both planes and goes through the point P(11, -3, 5).

[2 marks]

Question 8c

(c) Find the coordinates of the point where the line L intersects the plane $\varPi_1.$

Question 8d

(d) Hence find the shortest distance between the two planes \varPi_1 and $\varPi_2.$

[2 marks]

Question 9a

The plane Π has the vector equation $\mathbf{r} = \begin{pmatrix} 6 \\ -19 \\ -6 \end{pmatrix} + \lambda \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 8 \\ -1 \end{pmatrix}.$

(a)

Find a vector that is perpendicular to the plane Π .

[2 marks]

Question 9b

(b)

Q is the point on the plane Π that is closest to the point P(4, 0, -3). Find the coordinates of the point Q.

Question 9c

(c) Hence find the reflection of the point P in the plane $\varPi.$

[3 marks]

Question 10a

Two planes are defined by the Cartesian equations:

$$\Pi_1 : x - 2y + 3z = 11$$
$$\Pi_2 : 3x + 4y - z = 3.$$

(a)

Find the acute angle, in radians, between $\varPi_{\rm l}$ and $\varPi_{\rm 2}.$

SaveMyExams

Head to savemy exams.co.uk for more a we some resources

Question 10b

A third plane Π_3 is defined by the equation 5x + ky + z = 13 where $k \in \mathbb{R}$.

(b)

The plane \varPi_3 is perpendicular to the plane \varPi_1 . Find the value of k.

[2 marks]

Question 10c

(c)

(i)

Describe the geometrical configuration of the three planes.

(ii)

Find the acute angle, in radians, between \varPi_2 and \varPi_3 .