

5.3 Bond Enthalpy

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Торіс	5.3 Bond Enthalpy
Difficulty	Hard

Time allowed:	50
Score:	/39
Percentage:	/100

Question la

a) Define the term average bond enthalpy.

[2]

[2 marks]

Question 1b

b)

Determine the bond dissociation energy, in kJ mol⁻¹, for one mole of O-F bonds using the following equation and section 11 of the data booklet. Give your answer to 3 significant figures.

 $F_2(g) + \frac{1}{2}O_2(g) \rightarrow OF_2(g) \Delta H_r = +28 \text{ kJ mol}^{-1}$

[3]

[3 marks]

Question 1c

c)

The reaction of ethanoyl chloride, CH_3COCI , and ethanol form an ester. State the equation for this reaction.

[2]

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1d

d)

Use section 11 in the data booklet to deduce the energy required, in kJ mol⁻¹, to break the bonds.

[2]

[2 marks]

Question le

e)

Deduce the energy released, in kJ mol⁻¹, when the bonds are formed and therefore the enthalpy change for the reaction.

[3]

[3 marks]

Question 2a

a)

Methane reacts violently with fluorine to form carbon tetrafluoride and hydrogen fluoride

Formulate the equation for this reaction.

[2]

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2b

b)

	[4 marks]
	[2]
iii) The enthalpy change, ΔH_r , in kJ mol ⁻¹ for this reaction.	[']
ii) The energy released, in kJ, to form the bonds for the reaction between methane and fluorine.	
i) The energy required, in kJ, to break the bonds for the reaction between methane and fluorine.	[1]
Use your answer to part a) and section 10 of the data booklet to calculate the following:	

Question 2c

c)

A student suggested that one reason for the high reactivity of fluorine is a weak F-F bond. State whether the student is correct. Justify your answer.

[2]

[2 marks]

Question 2d

d)

Sketch a labelled energy diagram for the reaction of methane and fluorine.

[3 marks]

Question 3a

a)

Hydrazine has the formula N_2H_4 and is used as a rocket fuel (e.g. for the Apollo moon rockets). It burns in the following reaction for which the enthalpy change is -583 kJ mol⁻¹.

 $N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$

Sketch the Lewis structure of hydrazine, N_2H_4 .

[2]

[2 marks]

Question 3b

b)

Use section 11 of the Data booklet and the information in part a) to deduce the bond enthalpy, in kJ mol⁻¹, for the N-N bond.

[3]

[3 marks]

FaveMyExams Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3c

c)

Outline why the value of enthalpy of reaction calculated from bond enthalpies is less accurate.

[1]

[1 mark]

Question 4a

a)

Ozone prevents UV radiation emitted from the Sun reaching the surface of the Earth. Draw the resonance Lewis structures of ozone.

[3]

[3 marks]

Question 4b

b)

By using equations, state the environmental impact of CFCs on the ozone layer.

[4]

[4 marks]

Question 4c

c)

The destruction of ozone is a significant environmental issue as ozone can absorb frequencies of ultraviolet radiation that oxygen can not.

Explain with reference to the structure and bonding of oxygen and ozone why this occurs.

[3]

[3 marks]