

1.2 Reacting Masses & Volumes

Question Paper

Course	DP IB Chemistry
Section	1. Stoichiometric Relationships
Торіс	1.2 Reacting Masses & Volumes
Difficulty	Hard

Time allowed:	20
Score:	/12
Percentage:	/100

A periodic table is needed for this question

When a 1.00 g sample of carbon is burned in a limited supply of oxygen, 0.72 g of the carbon combusts to form CO_2 and 0.28 g of the carbon combusts to form CO_2

These gases were passed through excess NaOH(aq) which absorbs the CO_2 , but not the CO. The remaining gas was then dried and collected.

Assuming that all gas volumes were taken at 25° C and 100 kPa pressure, what was the volume of gas at the end of the reaction? (Molar Volume of a gas at rtp = 24 dm^3)

- **A** 0.01 dm³
- **B** 100 cm³
- **C** 2.40 dm³
- **D** 240 cm³

Question 2

A periodic table is needed for this question

Chicken eggs are made up of 5% by mass of egg shell. The average egg has a mass of 50 g.

Assume that chicken eggshell is pure calcium carbonate.

How many complete chicken's egg shells would need to neutralise 50 cm³ of 2.0 mol dm⁻³ ethanoic acid?

A 4
B 3
C 2
D 1

A periodic table is needed for this question

When a sample of potassium oxide, K_2O , is dissolved in 250 cm³ of distilled water, 25 cm³ of this solution is titrated against sulfuric acid with a concentration of 2.00 mol dm⁻³. Complete neutralisation takes place with 15 cm³ of sulfuric acid.

What is the mass of the original sample of potassium oxide dissolved in 250 cm³ of distilled water?

A

$$0.015 \times 250 \times 94.20$$

 25
 B
 $2.00 \times 0.015 \times 94.20$

 C
 $2.00 \times 0.015 \times 250 \times 94.20$

 D
 $2.00 \times 0.015 \times 25 \times 94.20$

 250

Question 4

A periodic table is needed for this question

Iron and chromium can be made into an alloy called ferrochrome. Ferrochrome can be dissolved in dilute sulfuric acid to produce $FeSO_4$ and $Cr_2(SO_4)_3$. The $FeSO_4$ reacts with acidified $K_2Cr_2O_7$ as shown in this equation:

 $14H^{+} + 6Fe^{2+} + Cr_2O_7^{-2-} \rightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$

When 1.00 g of ferrochrome is dissolved in dilute sulfuric acid and then titrated, 13.1 cm³ of 0.100 mol dm⁻³ $K_2Cr_2O_7$ is needed for the complete reaction.

In the sample of ferrochrome, what is the percentage by mass of Fe?

Α	$\frac{13.1\times0.1\times~6\times55.85\times100}{1000\times1}$
в	$\frac{13.1\times0.1\times6\times55.85}{1000}$
с	$\frac{13.1 \times 0.1 \ \times 55.85 \times 100}{1000 \times 1}$
D	$\frac{13.1\times0.1~\times~6\times55.85\times1000}{100\times1}$

10 cm³ of methane and 10 cm³ of ethane were sparked with an excess of oxygen. Once cooled, the remaining gas was passed through aqueous potassium hydroxide, which absorbs carbon dioxide.

Assume all measurements were taken at 25°C and 1 atm pressure.

What volume of gas is absorbed by the alkali?

45 cm ³
30 cm ³
20 cm ³

D 10 cm³

[1 mark]

Question 6

A solution of Sn^{2+} ions will reduce MnO_4^{-} ions to Mn^{2+} ions when acidified. The Sn^{2+} ions are oxidised to Sn^{4+} ions in this reaction.

How many moles of Mn^{2+} ions are formed when a solution containing 18.96 g of $SnCl_2$ (M_r: 189.60) is added to an excess of acidified KMnO₄ solution?

Α	0.010
в	0.015
с	0.040
_	0.050

Some fireworks can use the reaction between aluminium powder and anhydrous barium nitrate as a propellant. Metal oxides and nitrogen are the only products when this happens.

 $10AI + 3Ba(NO_3)_2 \rightarrow 5AI_2O_3 + 3BaO + 3N_2$

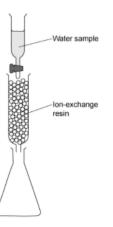
When 0.783 g of anhydrous barium nitrate (M_r 261.35) reacts with an excess of aluminium what is the volume of nitrogen produced in cm³? (Molar volume of a gas = 24 dm³)

Α	$\frac{0.783 \times 24 \times 3}{261.35}$
в	$\frac{261.35 \times 24000}{0.783 \times 1000}$
С	$\frac{261.35}{0.783 \times 24000}$
D	$\frac{0.783 \times 24000}{261.35}$

A periodic table is needed for this question

Excess acidified potassium dichromate(VI) was mixed with 2.76 g of ethanol. The reaction mixture was then boiled under reflux for one hour. Once the reaction had completed, the organic product was collected by distillation.

The yield of the product was 75.0%


What is the mass of the product collected?

Α	$\frac{2.76 \times 60.06}{46.08}$
в	$\frac{75 \times 2.76 \times 60.06}{100 \times 46.08}$
с	$\frac{100 \times 2.76 \times 60.06}{75 \times 46.08}$
D	$\frac{75 \times 2.76 \times 46.08}{100 \times 60.06}$

[1 mark]

Page 8 of 12

The concentration of calcium ions in a sample of water can be determined by using an ion-exchange column, shown in the diagram below:

A 50 cm³ sample of water containing dissolved calcium sulfate was passed through the ion-exchange resin.

Each calcium ion in the sample was exchanged for two hydrogen ions. The resulting acidic solution collected in the flask required 25 cm³ of 1.0×10^{-2} mol dm⁻³ potassium hydroxide for complete neutralisation.

What was the concentration of the calcium sulfate in the original sample?

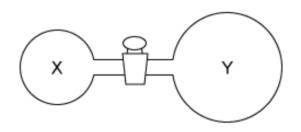
Α	$\frac{0.050 \times 1.0 \times 10^{-2}}{2 \times 0.025}$
в	$\frac{0.025 \times 1.0 \times 10^{-2}}{0.050}$
с	$\frac{25 \times 1.0 \times 10^{-2}}{2 \times 0.050}$
D	$\underline{0.025\times1.0\times10^{-2}}$

 2×0.050

Question 10

A tube of volume 0.3 dm³ is filled with a gas at 27 $^{\circ}\rm C$ and 100kPa, the mass of the tube increases by 1.01×10^{-3} kg.

Assume the gas is obeying the ideal gas laws.


If M_r is the Molar mass of the gas, what is the mass of this sample of gas?

[1 mark]

Page 10 of 12

Question 11

The glass containers X and Y are connected by a closed valve.

X contains pure CO₂ gas at 25 °C and a pressure of 1×10^5 Pa. Container Y has been evacuated prior to the experiment and has a volume three times bigger than container X.

During the experiment, the valve is opened, and the temperature of the whole apparatus is raised to 160 °C.

What is the final pressure in the system?

Α	$\frac{1 \times 10^5 \times 160}{4 \times 25}$
в	$\frac{4\times10^5\ \times433}{3\times298}$
С	$\frac{1 \times 10^5 \times 433}{3 \times 298}$
D	$\frac{1\times10^5\times433}{4\times298}$

Question 12

lodine is a shiny, black solid. Solid iodine sublimes easily when heated to produce a purple vapour.

A block of solid iodine is put into a closed container and completely sublimed to produce 1.3 dm³ of iodine vapour. It is then kept at a constant temperature and pressure of 100kPa.

The empty container had a mass of 3.22 g and when iodine was added the mass increased to 9.57 g. (M_r I₂= 253.8)

If iodine vapour acts as an ideal gas, what is the approximate temperature of the iodine vapour?

Α	$\frac{(9.57 - 3.22) \times 100000 \times 0.0013}{253.8 \times 8.314}$
в	$\frac{253.8 \times 100000 \times 0.0013}{(9.57 - 3.22) \times 8.314}$
С	$\frac{253.8 \times 100000 \times 1.3}{(9.57 - 3.22) \times 8.314}$
D	$\frac{253.8 \times 100 \times 0.0013}{(9.57 - 3.22) \times 8.314}$