

2.8 Inequalities

Question Paper

Course	DP IB Maths
Section	2. Functions
Торіс	2.8 Inequalities
Difficulty	Very Hard

Time allowed:	60
Score:	/47
Percentage:	/100

Save My Exams

Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Consider the functions defined by $f(x) = x^2 - 6ax + b + 10$ and g(x) = ax + 2b + 3, where $a, b \in Z^+$. Given that $f(x) \le g(x)$ only for $2 \le x \le 5$, find the values of a and b.

[4 marks]

Question 2a

The function defined by $f(x) = x^4 - 12x^3 + 46x^2 - 60x + 25$ can be factorised into the form $f(x) = (x - a)^2(x - b)^2$, where a and b are positive integers such that a < b.

(a)

Find the values of a and b.

[3 marks]

Question 2b

(b) Determine the set of values of that satisfy (i) $f(x) \ge 0$, (ii) $f(-x) \ge 0$, (iii) -f(x) < 0.

[3 marks]

Question 2c

(c)

Determine the smallest positive value k such that the solution to the inequality $f(x) \le k$ is a single interval.

[2 marks]

Question 3

The function f is such that

 $f(x) \ge 0$ for $x \le 3$ and for $4 \le x \le 5$, $f(x) \le 0$ for $3 \le x \le 4$ and for $x \ge 5$.

Find a polynomial, of the lowest degree possible, that satisfies the condition f(0) = 5.

[5 marks]

Question 4a

(a) Sketch the graph of y = f(x) where

$$f(x) = \frac{(x+2)(x-4)(x-6)}{(x-1)(x-5)}$$

Label any intersections with the coordinate axes and state the equations of any vertical asymptotes.

[3 marks]

Question 4b

(b) Find the values of x that satisfy (i) $f(x) \ge 0.$ (ii) $f(|x|) \ge 0.$

[5 marks]

Question 5

The region R is defined by the three straight lines given by the inequalities

 $y \ge 1,$ $y \le 2x + 8,$ $x + y \le 10.$

The function f is defined by $f(x) = 2 + \frac{1}{x-1}$. Find the largest domain of f such that the graph of f lies within the region R. Give answers as exact values where appropriate.

[6 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6a

(a)

Consider the graphs with equations

$$y = \frac{(x+4)(x-1)}{x-1}$$
 and $y = 6 - x$.

Explain why the two graphs do **not** intersect.

[1mark]

Question 6b

(b)

Consider the graphs with equations

$$y = \frac{(x-6)(x-1)^2}{x-1}$$
 and $y = (8-x)(x-1)$.

(i)

Find the coordinates of any points of intersections between the two graphs.

(ii)

Hence, or otherwise, solve the inequality

$$\frac{(x-6)(x-1)^2}{x-1} \le (8-x)(x-1).$$

[3 marks]

Question 7a

Consider the functions defined by $f(x) = \sqrt{(9-x^2)}$, $g(x) = 3 - \sqrt{(9-x^2)}$ and $h(x) = \frac{x+3}{2}$. All three functions have the domain $-3 \le x \le 3$.

(a)

On the same diagram, sketch the graphs of f, g and h.

[3 marks]

Question 7b

(b) Find the set of values of x which satisfy the inequality f(x) > g(x) > h(x).

[3 marks]

Question 8

Find the exact values for x such that

$$\frac{x}{(x+2)(x-3)} \ge x$$

[6 marks]

Page 8 of 8