

12.1 The Interaction of Matter with Radiation

Question Paper

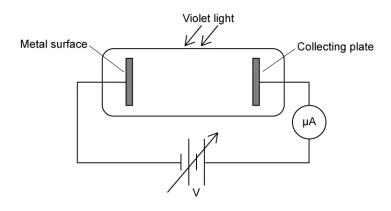
Course	DP IB Physics
Section	12. Quantum & Nuclear Physics (HL only)
Topic	12.1 The Interaction of Matter with Radiation
Difficulty	Medium

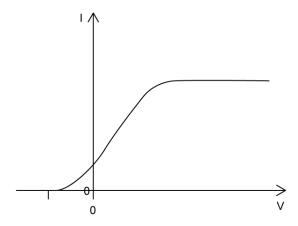
Time allowed: 20

Score: /10

Percentage: /100

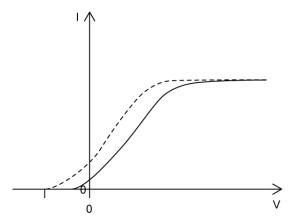
A subatomic particle of mass m has an uncertainty in its position r, denoted by Δr . What is the uncertainty in its velocity, Δv ?


- A. $\frac{hm}{4\pi\Delta r}$
- $\mathsf{B.}\,\frac{h}{4\,\pi\Delta\,r}$
- C. $\frac{h}{4\pi m\Delta r}$
- D. $\frac{h}{4\pi}$

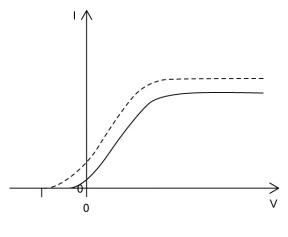

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 2

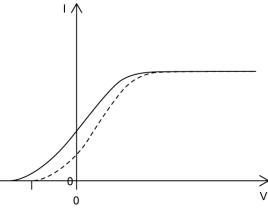
Violet light is incident on a metal surface, producing photoelectrons.



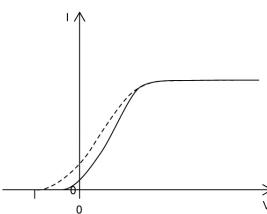
The variation of photocurrent / with potential difference V is shown.


The light source is changed to red light of the same intensity as the violet light. Which graph shows the variation of photocurrent I with potential difference V for the red light? The results for the violet light are shown as a dashed line.

Α.



В.

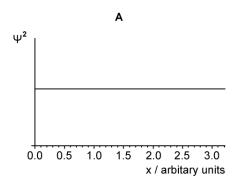

 $Head to \underline{save my exams.co.uk} for more a we some resources$

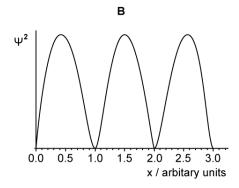
C.

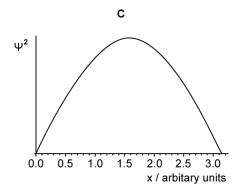
D.

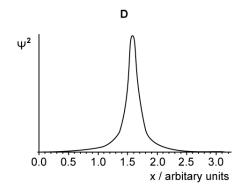
Which expression is proportional to the probability of finding an electron in a particular region of space?

- $A.\,The\,magnitude\,of\,the\,wave\,function$
- B. The square of the magnitude of the wave function
- C. $\frac{h}{4 \pi \times uncertainty \ in \ momentum}$
- D. $\frac{h}{4\pi \times uncertainty \ in \ energy}$


 $Head to \underline{savemy exams.co.uk} for more awas ome resources$

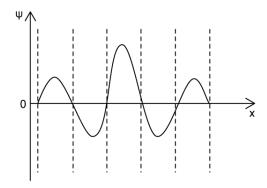

Question 4


The graphs show the variation with distance x of the square of the magnitude of the wave function, ψ^2 , of a particle. Which graph corresponds to a particle with the largest uncertainty in momentum?

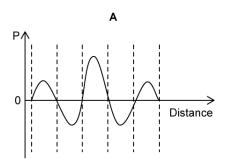


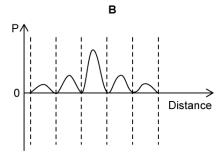
 $Head to \underline{save my exams.co.uk} for more awe some resources$

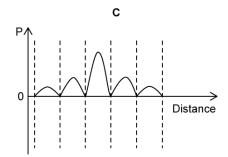
Page 7 of 13

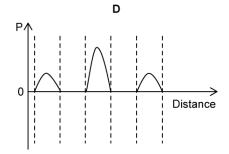

 $Head to \underline{save my exams.co.uk} for more a we some resources$

 $Head to \underline{savemy exams.co.uk} for more awas ome resources$


Question 5


The graph shows how the wave function Ψ of an electron varies with distance x.




Which of the following graphs shows the probability \mathbb{P} of finding the electron at each position along the distance x?

 $Head to \underline{save my exams.co.uk} for more awe some resources$

According to Heisenberg's uncertainty principle, conjugate quantities are pairs of quantities that cannot be known simultaneously with unlimited precision. What unit represents the product of two conjugate quantities?

- $A. kg^2 m s^{-1}$
- $B. kg m^2 s$
- $C. kg m^2 s^{-1}$
- $D. kg m^2 s^{-2}$

[1 mark]

Question 7

Alpha particles of mass m are accelerated from rest through a potential difference ΔV . Which of the following gives the de Broglie wavelength of the alpha particles as a result of the acceleration?

Use the following data:

- Planck's constant is h
- The magnitude of charge on an electron is e
- A. $hm\Delta V$
- B. $\sqrt{2hm\Delta Ve}$
- $C.\sqrt{\frac{h}{m\Delta V}}$
- D. $\frac{h}{\sqrt{4m\Delta Ve}}$

Which expression evaluates the de Broglie wavelength of an electron of mass m and charge e in the n=2 state of hydrogen?

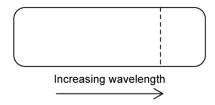
- A. $\frac{h}{\sqrt{2me}}$
- B. $\frac{h}{\sqrt{3.4me}}$
- C. $\frac{h}{\sqrt{6.8me}}$
- D. $\frac{h}{\sqrt{13.6me}}$

[1 mark]

Question 9

The electron wave function Ψ is a function of position and time. Which expression evaluates the probability of discovering the electron in some volume ΔV ?

- Α. ψ
- B. ψ^2
- C. $|\psi|^2$
- D. $|\psi|^2 \Delta V$



Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 10

According to the Bohr model for hydrogen, visible light is emitted when electrons make transitions from excited states down to the state with n = 2.

The dotted line in the diagram represents such a transition, from n = 3 to n = 2, in the spectrum of hydrogen.

Which of the following diagrams could represent the visible light emission spectrum of hydrogen?

Α	В
С	D