

7.3 The Structure of Matter

Question Paper

Course	DP IB Physics
Section	7. Atomic, Nuclear & Particle Physics
Торіс	7.3 The Structure of Matter
Difficulty	Easy

Time allowed:	80
Score:	/66
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

The Rutherford-Geiger-Marsden Experiment provided evidence for the structure of the atom. The set up consisted of alpha particles being fired at a thin gold foil, with a detector to detect deflected particles.

The diagram shows some of the potential paths taken by the alpha particles.

(a)

Draw lines to connect the correct statements for each path of the alpha particle.

(i)	The majority of α -particles went straight through the gold foil	This suggested the nucleus is extremely small and where the mass and charge of the atom is concentrated
(ii)	Some α-particles deflected through small angles of <10°	This suggested the atom is mainly empty space
(iii)	Only a small number of α -particles deflected straight back at angles of >90°	This suggested there is a positive nucleus at the centre (since two positive charges would repel)

[3]

Question 1b

Since Rutherford's discovery, further discoveries about the nature of matter have been made.

(b)

Complete the following sentences with appropriate words or phrases:

The nucleus is made of ______ and _____, and these themselves are made of the fundamental particles known as ______. Any particle made of these is known as a ______. Another example of a fundamental particle is the ______.

[5]

[5 marks]

Question 1c

One type of hadron is the K+ meson, which has a strangeness of +1.

(c)

 (ii) State the baryon number of a K+ meson (iii) Show that the quark composition of a K+ meson is use 	arks]
 (ii) State the baryon number of a K+ meson (iii) Chew that the guerk composition of a K+ meson is Used 	[4]
(ii) State the baryon number of a K+ meson	
(ii)	[1]
	[1]
(I) State the quark composition of a meson	

Question 1d

Electrons are an example of another type of fundamental particle called a lepton.

(d)

(i)

State the charge on a muon.

(ii)

State the mass of the electron neutrino.

(iii)

State the fundamental force which leptons do not interact with, but quarks do.

[1]

[1]

[1]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 2a

The following particles are available:

 $p \quad \overline{n} \quad \mu^+ \quad e^+ \quad \gamma$

(a)

Identify all examples of:

(i) Hadrons.	
(ii)	[1]
	[1]
Antiparticles.	
(iv) Charged particles	[1]
	[1]
Exchange particles.	
	[5]

Save My Exams

Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 2b

Quarks can combine to give various baryons and mesons. The proton and neutron are the baryons which subsequently make up the nucleus.

(b)

State the quark composition of:

(i) A proton.	
(ii)	[1]
A neutron.	

[1]

[2 marks]

Question 2c

The proton has a charge of +le.

(C)

Explain why the proton has this charge by referring to the charge of its constituent quarks.

[2]

Question 2d

Protons and neutrons are both examples of baryons. An electron is an example of a lepton

(d)

Complete the table below with the correct charge, baryon and lepton numbers for each particle.

	Charge	Baryon number	Lepton number
Proton, <i>p</i>	+1	1	
Anti-Neutron, \overline{n}			0
Pion minus, π^-	-1		0
Photon, γ	0	0	
Up quark, u	$+\frac{2}{3}$		0
Electron, e		0	

[6]

[6 marks]

Question 3a

The four fundamental forces are mediated through exchange particles.

(a)

Define the phrase 'exchange particle'.

[2]

Question 3b

(b)

Draw lines to match the force with the correct exchange particle:

Fundamental force
Electromagnetic
Strong
Weak
Gravitational

Exchange particle
Pion/gluon
Graviton (theoretical)
W ⁻ , W ⁺ , Z ⁰
Photon (virtual)

[4]

[4 marks]

Question 3c

(c)

Arrange the four fundamental forces in the boxes below the arrow in order of strongest to weakest.

[3]

Question 3d

Feynman diagrams represent particle interactions in the form of a diagram.

The following is a Feynman diagram showing beta-minus decay, with the exchange particle missing.

(d) Label the correct exchange particle on the diagram.

[1mark]

[1]

Question 4a

(a)

State what is meant by the standard model of particle physics.

[2]

FaveMyExams Head to <u>savemyexams.co.uk</u> for more a we some resources

Question 4b

The standard model describes the fundamental particles that make up other sub-atomic particles.

One method of representing the standard model is as shown in the diagram below.

(b)

Complete the missing information in the boxes in the diagram.

[3]

[3 marks]

Page 10 of 14

Question 4c

Another more detailed way of showing the standard model is shown below, where the different fundamental particles are arranged on cards:

u up	c charm	t top	g graviton	H Higgs boson
d	s	b	Y	
down	strange	bottom	photon	
e	μ	τ	Z	
electron	muon	tau	Z boson	
V _e	V _µ	V _τ	W	
electron	muon	tau	W	
neutrino	neutrino	neutrino	boson	

(c)

By writing a letter in the correct box, identify:

[1]
[1]
[1]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 4d

The final particle on the standard model diagram in part (b) is the Higgs boson. It was predicted in 1964 and confirmed in 2012.

(d)

State what the Higgs boson is responsible for.

[1]

[1mark]

Question 5a

The following Feynman diagram shows a particle interaction.

(a) Label the axes of the Feynman diagram.

[2]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5b

(b) State:

(i)

The exchange particle in the interaction shown in part (a).

(ii)

The fundamental force represented by this exchange particle.

[1]

[1]

[2 marks]

Question 5c

The Feynman diagram in part (a) represents part of the particle interaction

$$\pi^- + p \rightarrow K^0 + \Lambda^0$$

The composition of each particle in terms of quarks is:

- $\pi^- = d \overline{u}$
- p = uud
- $K^0 = d\overline{s}$
- $\Lambda^0 = uds$

(c)

(i)

Identify the two particles in this interaction which contain a strange or anti-strange quark.

(ii)

By considering the strangeness of each of the particles, show that strangeness is conserved in this interaction.

(iii)

 $State the interaction which does {\it not conserve strangeness}.$

[1]

[2]

[3]

[6 marks]

Question 5d

Quarks can only exist within hadrons, this is known as quark confinement.

(d)

Complete the gaps in the sentences below to describe confinement:

There are two types of hadron, ______ and _____. Quarks cannot be ______ but must be in pairs or triplets. Quarks are kept in place by ______. If an attempt is made to separate quarks, more ______ are produced using the energy required to separate them.

[5]

[5 marks]