1.1 Matter, Chemical Change & the Mole Concept

Question Paper

Course	DP IB Chemistry
Section	1. Stoichiometric Relationships
Topic	1.1 Matter, Chemical Change & the Mole Concept
Difficulty	Easy

Time allowed: 40

Score: /27

Percentage: /100

 $Head to \underline{save my exams.co.uk} for more a we some resources\\$

Question la

a)

 $Urea, CO(NH_2)_2, is an animal waste product that can be used as a fertiliser. It can also be made artificially by reacting ammonia, NH_3, with carbon dioxide, CO_2, forming water as a co-product.\\$

Formulate a balanced equation for the reaction.

[1 mark]

Question 1b

b)

Calculate the molar mass of urea, $CO(NH_2)_2$.

[1 mark]

Question 1c

C)

Calculate the percentage of nitrogen in urea. Give your answer to two decimal places.

[1 mark]

Question 1d

d)

The chemical structure of urea is shown below:

Deduce the total number of electron pairs in the molecule.

[1 mark]

Question 2a

a)

Name the six changes of state, and state which changes are accompanied by a decrease in particle separation distances.

[2 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 2b b)	
State the difference between a homogeneous and a heterogeneous mixture.	[1 mark]
Question 2c c) Classify the following mixtures as homogeneous or heterogeneous: crude oil, concrete and brass.	[3 marks]
Question 2d d) Which technique would be the most suitable for the separation of crude oil?	[1 mark]
Question 3a a) A compound with M_r = 104.07 contains 34.62 % carbon, 3.88 % hydrogen and 61.50 % oxygen by mass. Calculate its empirical formula.	
Calculate its emplificationnula.	[4 marks]

Question 3b

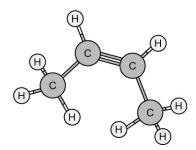
b)

Calculate the molecular formula of the compound in part a).

[1 mark]

Question 3c

c)


Draw a possible structure for the compound in part b).

[1 mark]

Question 3d

d)

Deduce the empirical formula of the following molecule:

[1 mark]

Question 4a

C)

Determine the molecular formula of the compound in part b), given the M_r = 90.09.

 $Head to \underline{save my exams.co.uk} for more a we some resources$

J	[1 mark]
Question 4b	
a) State the meaning of the term empirical formula.	
	[1 mark]
Question 4c	
An unknown compound contains carbon, hydrogen and oxygen only. It was shown to contain 3.20 g carbon, 0.54 g hydrogen and 4.26 g oxygen.	
b) Calculate the empirical formula of the unknown compound.	
	ß marks]
Question 5a	
a)	
Define the term one mole in chemistry.	
	[1 mark]
Question 5b	
b)	
How many atoms are present in 0.200 mol of P_2O_5 ?	[] mork]
	[1 mark]

 $Head to \underline{save my exams.co.uk} for more awe some resources$

Question 5c

c)

How many moles are in 2.35 x 10²⁴ molecules of oxygen gas?

[1 mark]

Question 5d

d)

How many atoms are in 4.00 g of hydrogen gas?

[1 mark]