

2.1 Atomic & Electronic Structure

Question Paper

Course	DP IB Chemistry	
Section	2. Atomic Structure	
Topic	2.1 Atomic & Electronic Structure	
Difficulty	Medium	

Time allowed: 60

Score: /42

Percentage: /100

Question la

a) Using your knowledge of atomic structure, complete **Table 1** below for the particles found in an atom.

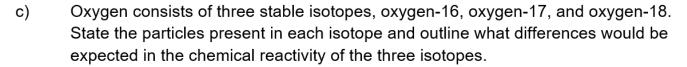
Table 1

Particle	Relative charge	Relative mass
Proton		
Neutron		
Electron		

[3 marks]

Question 1b

b) The actual mass of protons, neutrons and electrons is given in **Table 2**.


Table 2

	Proton	Neutron	Electron
Mass (kg)	1.672622 x 10 ⁻²⁷	1.674927 x 10 ⁻²⁷	9.109383 x 10 ⁻³¹

Calculate the mass, in g, of a nitrogen molecule.

[1 mark]

Question 1c

[2 marks]

Question 1d

d) Suggest why some elements have several isotopes and others, like fluorine, have only one known isotope (known as monoisotopic elements).

[1 mark]

Question 2a

a) Nitrous oxide is used as a sedative in dentistry and has the formula N_2O . Different sources of N_2O contain different ratios of ¹⁴N and ¹⁵N.

State the name of the instrument used to distinguish between ¹⁴N and ¹⁵N and outline two characteristic differences seen in the analysis of ¹⁴N and ¹⁵N.

[2 marks]

Question 2b

b) A sample of nitrous oxide was enriched so that it contained 4% by mass of ¹⁵N. Calculate the relative molecular mass of the resulting nitrous oxide.

$Head to \underline{savemy exams.co.uk} for more a we some resources\\$

Question 2c

c) Predict and explain, giving two reasons, how the first ionization energy of ¹⁵N would be different to ¹⁴N.

[3 marks]

Question 2d

d) An atom has twice as many protons, and twice as many neutrons, as an atom of ¹⁵N. Determine the chemical symbol for this atom, including the mass number, and deduce the number of electrons.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3a

a) The element chromium has several naturally occurring isotopes whose abundances are shown in **Table 1**.

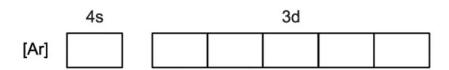
Table 1

Mass number	% abundance
50	4.345
52	83.789
53	9.501
54	2.365

Calculate the relative atomic mass of chromium to two decimal places.

[2 marks]

Question 3b


b) State the full electron configuration for chromium.

[1 mark]

Question 3c

c) State the meaning of **[Ar]** and complete the orbital diagram shown below for chromium.

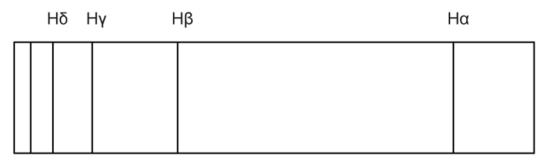
Figure 1

[2 marks]

Question 3d

- d) This question is about the chromium(III) ion, ${}^{52}_{24}\text{Cr}^{3+}$.
- i) State the number of protons, electrons, and neutrons in the chromium(III) ion.
- ii) Write the full electron configuration for the chromium(III) ion.

Question 4a


- a) This question is about line emission spectra of elements.
- i) Explain the difference between a continuous spectrum and a line spectrum.
- ii) Draw a labelled diagram that shows electron transitions in a hydrogen atom in the ultraviolet and visible regions of the electromagnetic spectrum. Include three electron transitions for each region.

[6 marks]

Question 4b

- b) The visible line emission spectrum of hydrogen is shown below in **Figure 1** and the wavelengths of the first four lines are listed in **Table 1**.
- i) Use the information provided and Sections 1 and 2 of the IB data booklet to determine the frequency of the red line.

Figure 1

The visible line emission spectrum hydrogen

Table 1

Balmer spectral line	Wavelength in nm	Colour
Ηα	656	Red
Нβ	486	Blue(cyan)
Нγ	434	Blue
Нδ	410	Violet

ii) Which spectral line carries more energy, $H\alpha$ or $H\delta$?

Question 4c

[1 mark]

Question 4d

d) Describe the relationship between colour, energy, frequency, and wavelength in the visible spectrum.

[2 marks]

Question 5a

- a) Electron configurations give you a summary of where you can find an electron around the nucleus of an atom. They can also be determined for an ion after an atom loses or gains electrons.
- i) State the full electron configuration of the rubidium ion, ${}^{85}_{37}\text{Rb}^+$.
- ii) State and explain the relative size of a rubidium ion compared to a krypton atom.

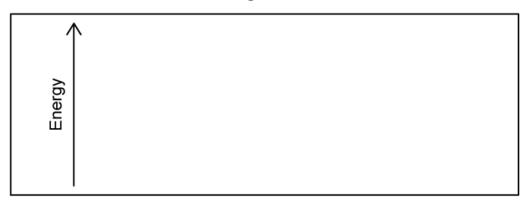
[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5b

b) The element rubidium has two naturally occurring isotopes of ⁸⁵Rb and ⁸⁷Rb. The relative atomic mass of rubidium is 85.47. Calculate the percentage abundance of each isotope.

[2 marks]


Question 5c

- c) The electrons in an atom are found in orbitals around the nucleus, which have different energy levels sometimes called shells.
- i) The fourth shell consists of the atomic orbitals 4d, 4f, 4p and 4s. List these orbitals in order of increasing energy.
- ii) State the number of atomic orbitals present in 4d, 4f, 4p and 4s.

Question 5d

d) Rubidium forms an ionic compound with selenium, Rb₂Se. Using boxes to represent orbitals and arrows to represent electrons, sketch the orbital diagram of the **valence shell** of selenium on the axis provided.

Figure 1

[1 mark]