

1.8 Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.8 Complex Numbers
Difficulty	Hard

Time allowed:	100
Score:	/79
Percentage:	/100

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

Consider the quadratic equation $z^2 - 8z + 25 = 0$, $z \in \mathbb{C}$.

The roots of the equation are $z_1 = a + bi$ and $z_2 = a - bi$ where $a, b \in \mathbb{Z}$.

(a)

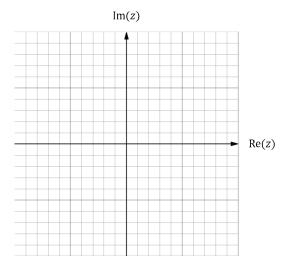
Find the value of a and b.

[3 marks]

Question 1b

(b)

Sketch z_1 , z_2 , $z_1 + z_2$ and $z_1 - z_2$ on the Argand diagram below, be sure to include an appropriate scale.



[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2

Consider the complex numbers $z_1 = -3 + 2i$ and $z_2 = 1 - 3i$.

Find

[7 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 3

Consider the complex numbers $z_1 = 3 - i$ and $z_2 = -2 - 3i$.

Find the modulus and argument of $z_1 z_2^*$.

[7 marks]

Question 4a

Consider the complex numbers $z_1 = 1 - 2i$ and $z_3 = -3 + 5i$.

(a) Work out the following: (i) $\operatorname{Re}(z_2 - z_1)$ (ii) $\operatorname{Im}(z_1 z_2)$ (iii) $\left(\frac{z_1}{z_2}\right)^*$ For part (iii) give your answer in the form a + bi, where a and b are real numbers.

[6 marks]

Question 4b

(b)

Write down the complex conjugate of z_2 and describe the geometrical relationship between z_2 and z_2^* .

[2 marks]

Question 5

Find all possible real values for a and b such that

```
(i)

(a + bi)(2 - 3i) = 8 + i

(ii)

a(2 + bi) = b(-6 + i)

(iii)

(2a + 3i)(3 + bi) = 12 + 21i
```

[7 marks]

Question 6a

(a) For a general complex number z = x + iy, where $x, y \in \mathbb{R}$, show that (i) $\operatorname{Re}(z) = \frac{z + z^*}{2i}$

(ii)

 $\operatorname{Im}(z) = \frac{z - z^*}{2\mathrm{i}}$

[3 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 6b

(b)

For the complex numbers $z_1 = a_1 + b_1 i$ and $z_2 = a_2 + b_2 i$, where $a_1, a_2, b_1, b_2 \in \mathbb{R}$, show that $|z_1 z_2| = |z_1| |z_2|$

[6 marks]

Question 7

Consider the complex numbers w = 2iz and w - z = 5 - 5i.

Find

(i) |z|(ii) arg w (iii) $\operatorname{Re}(z+w)$ (iv) $\operatorname{Im}(z-w)$

[8 marks]

Question 8a

Consider the complex numbers $z_1 = a - 6i$, $z_2 = 1 + bi$ and $z_1 z_2 = -17 - 9i$ where $a, b \in \mathbb{R}$.

(a)

Find the possible values of a and b.

[4 marks]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 8b

(b)

Using the answers gained in part (a), write down values for c and d that will satisfy the equation -(3 + i)(c + di) = 17 - 9i

[2 marks]

Question 9a

Consider the complex numbers z=3+5i and w=-2+3i.

(a)

Represent the complex numbers z and w on an Argand diagram.

[2 marks]

Question 9b

The points z + w and z - w are represented by the points A and B on the Argand diagram respectively.

(b) Find the angle $A\widehat{O}B$.

[5 marks]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 10a

Consider the complex numbers z = -4 - 3i, w = ai and $\frac{z}{w} = b + 2ai$, where $a, b \in \mathbb{R}$.

(a)

Find the possible values of a and b.

[4 marks]

Question 10b

(b) Find the modulus of $\frac{W}{Z}$.

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 11a

Let $\omega_1 = 3 - i$ and $\omega_2 = 1 + 2i$.

(a)

Given that $\frac{1}{\omega_1} + \frac{1}{\omega_2} = \frac{1}{z}$, express z in the form a + bi, where $a, b \in \mathbb{R}$.

[4 marks]

Question 11b

(b) Find $\omega_1 \omega_2 z^*$, giving your answer in the form a + bi, where $a, b \in \mathbb{R}$.

[2 marks]