

2.4 Other Functions & Graphs

Question Paper

Course	DP IB Maths
Section	2. Functions
Торіс	2.4 Other Functions & Graphs
Difficulty	Very Hard

Time allowed:	80
Score:	/63
Percentage:	/100

Question la

A function is defined by $f(x) = e^{x^2 + bx + 4}$. The graph of *f* has an axis of symmetry of x = 2.

(a) Find the value of *b*.

[2 marks]

Question 1b

(b) Find the range of *f*.

[1mark]

Question lc

Another function is defined by $g(x) = -\frac{(x^2-25)}{5}$. The graph of f and g intersect at points A and B.

(c) Find the equation of the line passing through points A and B. Give your answer in the form y = mx + c.

[3 marks]

Question 1d

(d) Find the distance of the line AB.

[2 marks]

Question 2a

Consider the function $f(x) = 5 - \log(6 - 4x)$. The line l_1 intersects the graph of f at point A(-1, y) and B(x, 5).

(a) Find the value of *x* and *y*.

[2 marks]

Question 2b

(b) Find the equation of l_1 . Give your answer in the form y = mx + c, where m and c are fractions.

[2 marks]

Question 3a

The function *f* is a quadratic in the form $f(x) = ax^2 + bx - 2$, for $-10 \le x \le 10$.

The graph of *f* has *x*-intercepts $\left(\frac{1+\sqrt{5}}{2}, 0\right)$ and $\left(\frac{1-\sqrt{5}}{2}, 0\right)$.

(a) Find the values of *a* and *b*.

Page 3 of 11

[4 marks]

Question 3b

Another function can be defined by $g(x) = 6(0.8)^{-x} - 1$, for $-10 \le x \le 10$.

The graph of f and g intersect at points A and B.

(b) Find the coordinates of A and B.

[2 marks]

Question 3c

(c) Solve the inequality f(x) < g(x).

[2 marks]

Question 4a

(a) Write down the domain and range of the logarithmic function $y = \log_b x$, where b > 0and $b \neq 1$.

[2 marks]

Question 4b

(b) Given that $\log_{y^2} x = 16 \log_x(y^2)$, find all the expressions for x in terms of y.

[6 marks]

Question 5a

Let $f(x) = 2x^4 - 2x^3 - 4x^2 + x + 1$, where $x \in \mathbb{R}$.

(a) Solve the inequality f(x) < 0.

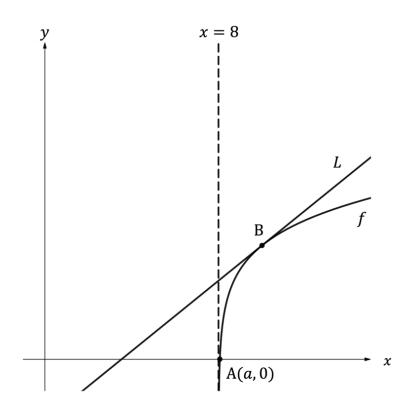
Question 5b

(b) For the graph of *f*, find the coordinates of the

- (i) local maximum point.
- (ii) local minimum points.

[3 marks]

Question 5c


(c) Write down the possible domains of *f* for which *f* has an inverse and explain why the domain must be restricted.

[3 marks]

Question 6a

Consider the function *f* defined by $f(x) = \ln(x^2 - 64)$, for x > 8.

The following diagram shows part of the graph of f which crosses the *x*-axis at point A, with coordinates (a, 0). The line L is the tangent to the graph of f at the point B.

(a) Find the exact value of *a*.

[3 marks]

Question 6b

The *x*-coordinate of B is 10. The *y*-coordinate of B can be written in the form $p \ln q$, where $p, q \in \mathbb{Z}$.

(b) Find the value of *p* and the value of *q*.

[4 marks]

Question 6c

The gradient of *L* is $\frac{5}{9}$. The equation of *L* can be written in the form $y = \frac{5}{9}x - u(v - \ln w)$.

(c) Find the values of *u*, *v* and *w*.

[5 marks]

SaveMyExams Head to savemy exams.co.uk for more a we some resources

Question 7a

A population of endangered birds, *P*, can be modelled by the equation

$$P_t = P_0 e^{kt},$$

where P_0 is the initial population and t is measured in years.

After three years, it is estimated that $\frac{P_3}{P_0} = 0.87$.

(a) Find the value of k and interpret its meaning.

[3 marks]

Question 7b

(b) Find the least number of whole years for which $\frac{P_t}{P_0} < 0.45$.

[5 marks]

Page 9 of 11

Question 8a

The intensity of light, *I*, is assumed to be 100% at the surface of the ocean and decreases with depth, *d*, and can be estimated by the function

 $I(d) = k(1.08)^{-d}$

where I is expressed as a percentage, d is the depth below the surface, in metres, and k is a constant.

(a) Calculate the value of *k*.

Question 8b

(b) State the domain and range of *I*.

Question 8c

(c) Calculate the intensity of light 6.2 m below the surface.

[2 marks]

[2 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 11 of 11