

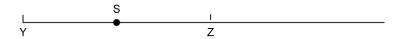
9.1 Simple Harmonic Motion

Question Paper

Course	DP IB Physics	
Section	9. Wave Phenomena (HL only)	
Topic	9.1 Simple Harmonic Motion	
Difficulty	Medium	

Time allowed: 20

Score: /10


Percentage: /100

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 1

A point on a guitar string S oscillates about its equilibrium position Z in simple harmonic motion.

The amplitude of the oscillation is YZ.

Which positions show when the acceleration of point S is at a maximum and the velocity of point S is at zero?

	Acceleration	Velocity
A.	Z	Y
В.	Y	Y
C.	Z	Z
D.	Υ	Z

[1 mark]

Question 2

A simple pendulum and a mass-spring system oscillate about their equilibrium positions with simple harmonic motion. On Earth, the period of the oscillations is *T*. The pendulum and the mass-spring system are taken to Mars where the acceleration of free fall is smaller than on Earth.

Which answer best describes the period of the pendulum and the mass-spring system on Mars?

	Simple Pendulum	Mass-spring System	
A.	Т	Greater than T	
В.	Т	Т	
C.	Greater than T	Greater than T	
D.	Greater than T	Т	

 $Head to \underline{save my exams.co.uk} for more awe some resources$

Question 3

Choose the correct statement describing the quantities that remain constant for an object in SHM.
A. Frequency, f.
B. Frequency, f, & period, T.
C. Period, T, & the spring constant, k.
D. Period, T , frequency, f , spring constant, k , & acceleration of freefall, g .
[1 mark]
Question 4
mass-spring system oscillates with simple harmonic motion. The mass <i>m</i> has an amplitude A and the spring has a total energy <i>E</i> . The mass is increased by half and the amplitude increased to 4A.
Vhat is the total energy in the spring?
A. 24E
B.12 <i>E</i>
C.8 <i>E</i>
D. 6E
[1 mark]
Question 5
pendulum oscillating with simple harmonic motion has an amplitude $x_0^{}$ and a maximum kinetic energy $E_{ m k}$.
What is the potential energy of the system when the pendulum bob is at a distance $0.4x_0$ from its maximum displacement?
A. O.36 <i>E</i> _k
B. O.4 <i>E</i> _k
C. 0.6E _k
D. 0.64 <i>E</i> _k
[1 mark]

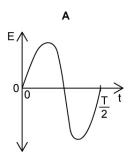
Question 6

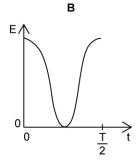
Which of the following is a correct arrangement for the maximum displacement of a particle performing simple harmonic motion?

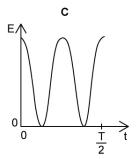
A.
$$x_0 = -\frac{a_{max} f^2}{4\pi^2}$$

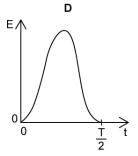
$$\mathsf{B.}\,x_0 = -\frac{a_{max}}{2\pi f^2}$$

$$C. X_0 = -\frac{a_{max}}{4\pi^2 T^2}$$


D.
$$x_0 = -\frac{a_{max}T^2}{4\pi^2}$$


[1 mark]


Question 7

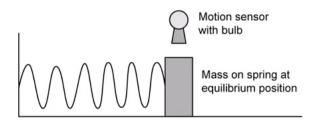

An ion in a crystal lattice structure oscillates with simple harmonic motion. The period of the oscillation is T. T is measured from equilibrium.

Which graph shows the change in kinetic energy of the ion from time t = 0 to $t = \frac{T}{2}$?

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 8

A simple pendulum performs simple harmonic motion. The pendulum bob has a mass m, the string has a length l, and the pendulum has a period T.

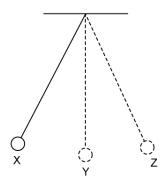

Which is the correct value for the period T if the mass of the pendulum bob is doubled and the length of the string is halved?

- A. 1.4 T
- B. 0.7 T
- C. 0.5 T
- D. 0.25 T

[1 mark]

Question 9

A mass-spring system oscillates about its equilibrium position in simple harmonic motion. A bulb on the motion sensor lights up each time the block passes the equilibrium position.


The block has a mass m and oscillates with a period T.

Select the new mass that would cause the period to double.

- A. 0.5m
- B.1.4m
- C.2m
- D. 4m

 $Head to \underline{savemy exams.co.uk} for more awe some resources$

Question 10

At which positions are the acceleration at zero, the displacement at a negative maximum, and velocity at a maximum?

	Acceleration	Displacement	Velocity
A.	Z	Y	Х
B.	Y	X	Y
C.	X	Z	Z
D.	Υ	X	Z