

3.3 Inheritance

Question Paper

Course	DP IB Biology
Section	3. Genetics
Topic	3.3 Inheritance
Difficulty	Medium

Time allowed: 20

Score: /10

Percentage: /100

Question 1

Through extensive experiments with pea plants, Gregor Mendel was able to show:

- I. The principles of inheritance.
- II. That purebred individuals could be cross-bred to produce a generation of offspring with identical phenotypes.
- III. That mutations within alleles could result in unexpected ratios of offspring.
- A I only
- **B** II only
- C II and III
- **D** I and II

[1 mark]

Question 2

How did Gregor Mendel ensure the reliability of his data?

- A Repeating his investigation many times.
- **B** Collecting large amounts of qualitative data.
- **C** Making observations of a pea plant over many years.
- **D** Completing a statistical test on his results.

Question 3

Which statement best describes the cells produced as a result of meiosis?

- A Haploid and genetically identical.
- **B** Diploid and genetically identical.
- C Haploid and genetically different.
- **D** Diploid and genetically different.

[1 mark]

Question 4

A species of plant can have either blue or white flowers. The colour of the flower is controlled by a single gene where the dominant allele codes for blue flowers.

Two heterozygous plants are crossed; which of the observed outcomes matches up most accurately to the expected ratio of blue to white flowers.

	Blue	White
Α	93	46
В	77	203
С	107	33
D	127	42

Question 5

Two parents have an equal chance of having a child with blood groups A, B, AB, or O.

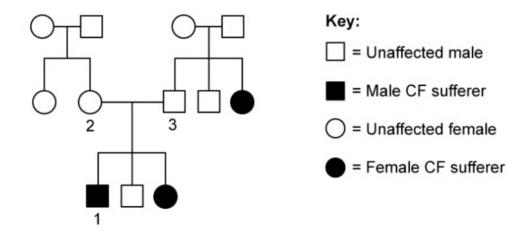
What are the genotypes of the parents?

- A AB, AO
- **B** AO, BO
- C AB, OO
- **D** AB, AB

[1 mark]

Question 6

A woman is a carrier of haemophilia; her husband does not have haemophilia.


What are the possible genotypes of their children?

	Sons	Daughters
Α	All sufferers	All carriers
В	Half healthy	All carriers
С	Half healthy	All healthy
D	Half healthy	Half carriers

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 7

The pedigree diagram shows the inheritance of cystic fibrosis across 3 generations.

Identify the genotype of the individuals labelled 1, 2 and 3 in the pedigree diagram.

	1	2	3
Α	Heterozygous	Homozygous dominant	Heterozygous
В	Homozygous recessive	Homozygous dominant	Heterozygous
С	Homozygous recessive	Heterozygous	Heterozygous
D	Heterozygous	Homozygous recessive	Homozygous dominant

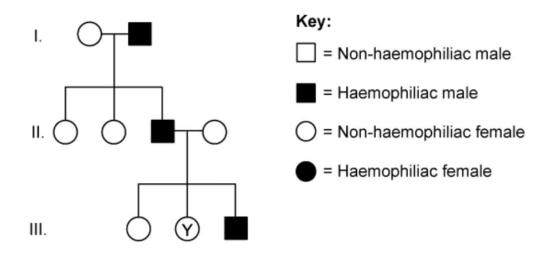
 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 8

A couple are trying to decide whether their children may be at risk of inheriting Huntington's disease. One parent is heterozygous for Huntingtons and the other is a healthy individual.

Calculate the % chance that their offspring are likely to suffer from the disease.

Α	50	1%
_	\circ	′ / U


D	250	/
D	25%	O

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 9

The pedigree diagram below shows the inheritance of haemophilia across three generations.

Identify the genotype of person Y.

- A XhXh
- B XHXH
- C XHXh
- D XHY

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 10

Which of the following are mutagenic agents?

- A X-rays, benzo(a)pyrene, radio waves
- **B** X-rays, microwaves, radio waves
- C X-rays, benzo(a)pyrene, gamma rays
- **D** X-rays, benzo(a)pyrene, microwaves