

3.2 Modelling a Gas

Question Paper

Course	DP IB Physics
Section	3. Thermal Physics
Торіс	3.2 Modelling a Gas
Difficulty	Easy

Time allowed:	20
Score:	/10
Percentage:	/100

Headto <u>savemyexams.co.uk</u> for more awesome resources

SaveMyExams

Question 1

What force does a particle of an ideal gas experience with a pressure of 166 kPa on an area of 2.0 m²?

- A. 83000 N
- B. 332 000 N
- C.0.083N
- D. 0.332 N

[1 mark]

Question 2

A fixed mass of an ideal gas is trapped in a cylinder of constant volume and its temperature is varied. Which graph shows the variation of the pressure of the gas with temperature in kelvin?

Question 3

Which row gives the correct definitions for n, N and N_A ?

	n	N	N _A
Α.	number of molecules	Avogadro's constant	Avogadro's constant
В.	Avogadro's constant	Avogadro's constant	number of molecules
C.	Avogadro's constant	number of moles	number of molecules
D.	number of moles	number of molecules	Avogadro's constant

[1mark]

Question 4

A sealed container contains a mixture of helium and neon gas.

The ratio of $\frac{\text{mass of a neon molecule}}{\text{mass of a helium molecule}}$ is 5.

What is the correct ratio for $\frac{\text{average kinetic energy of neon molecules}}{\text{average kinetic energy of helium molecules}}$?

A. $\frac{1}{5}$

B.1

C.5

D. Dependent on the concentration of each gas

[1mark]

Question 5

Which statement describes a correct assumption for the kinetic model of an ideal gas?

- A. The kinetic energy of a given molecule of the gas is constant.
- B. The forces between each gas molecule varies.
- C. The intermolecular potential energy of the molecules of the gas varies.
- D. The momentum of a given molecule of the gas varies upon a collision with the container.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6

The volume of an ideal gas in a container is decreased at constant temperature.

Which of the following statements are correct about the molecules of the gas?

- I. Their average kinetic energy increases.
- II. The frequency of the collisions per unit area of the container wall increases.
- III. The pressure of the gas increases.

A. I only

- B. I and III only
- C. II and III only
- D. I and II only

[1 mark]

Question 7

Which of the following is **not** an assumption of the kinetic model of ideal gases?

- A. All particles in the gas have different speeds.
- B. The duration of collisions between particles is long in comparison to the time between the collisions.
- C. There are no intermolecular forces between the particles in the gas.
- D. Collisions with the walls of the container are elastic.

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 8

Which graph shows the correct relationship between the volume, V, and pressure, p, of a gas kept at a constant temperature?

[1mark]

Question 9

Which condition allows the behaviour of a monatomic gas, such as argon, to approximate to that of an ideal gas?

- A. Low pressure.
- B. High temperature.
- C. High density.
- D. Very low temperature.

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 10

Which of the following is **not** an equation used for an ideal gas?

A.
$$pV = nRT$$

B. $\frac{P}{V} = \text{constant}$

C.
$$\frac{V}{T}$$
 = constant

D. $\frac{pV}{T}$ = constant