

7.1 Equilibrium

Question Paper

Course	DP IB Chemistry
Section	7. Equilibrium
Торіс	7.1 Equilibrium
Difficulty	Easy

Time allowed:	30
Score:	/17
Percentage:	/100

Save My Exams Head to savemy exams.co.uk for more a we some resources

a) Distinguish between the terms reaction quotient, Q, and equilibrium constant, K_c .

Question 1b

Question la

b)

Write an expression for the reaction quotient, Q, for this reaction.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

[1mark]

[1mark]

Question 1c

C)

 $The equilibrium \ constant, \ K_c, for the \ reaction \ is \ 0.282 \ at \ temperature \ T \ whilst \ the \ reaction \ quotient \ is \ calculated \ to \ be \ 0.5.$ Deduce the direction of the initial reaction.

[1mark]

Question 2a

a)

Urea can be made by the direct combination of ammonia and carbon dioxide gases. $2NH_3(g) + CO_2(g) \rightleftharpoons CO(NH_2)_2(g) + H_2O(g)$

Write the equilibrium constant expression, K_c .

Question 2b

b)

 $\Delta H < 0$ for the forward reaction. Predict the effect on the equilibrium constant, K_c , when the temperature is increased.

[1mark]

[1mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2c

c)

Predict what will happen to the equilibrium position if there is a decrease in pressure.

	[1 mark]
Question 2d	
d)	
The K_c value for the reaction is determined to be 2×10^{-9} mol dm ⁻³ at 298 K. Determine the magnitude of K_c if the reaction is reversed.	
	[1 mark]
Question 3a	
a)	
The following reaction was allowed to reach equilibrium at 761 K	
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \qquad \Delta H^{\theta} < 0$	
Determine the K_c expression for this reaction.	
	[1 mark]
Question 3b	
b)	
The K value for the repetion in part a) is found to be 19 52	

The K_c value for the reaction in part a) is found to be 48.52. Deduce the K_c value for the following reaction.

 $1/2H_2(g) + 1/2I_2(g) \rightleftharpoons HI(g)$

[1 mark]

Question 3c

c)

The temperature of the reaction is increased to 703K and the new K_c value is found to be 54.30. Explain why the value of K_c has changed.

[1 mark]

Question 3d

d)

A catalyst is added in an attempt to speed up the rate of reaction. State what will happen to the value of $\rm K_{\rm c}.$

Question 4a

a)

State what is meant by the term dynamic equilibrium.

Question 4b

b) Describe **two** characteristics of a reaction at equilibrium.

Question 4c

c) State and explain the effect of a catalyst on the position of equilibrium.

[2 marks]

[1mark]

[1mark]

[2 marks]

Question 4d

d)

Methanoic acid reacts with methanol to form the ester methyl methanoate.

 $HCOOH(I) + CH_3OH(I) \rightleftharpoons HCOOCH_3(I) + H_2O(I)$

The esterification reaction is exothermic. State the effect of increasing temperature on the value of the equilibrium constant (K_c) for this reaction.

[1mark]