5.1 Electric Fields

Question Paper

Course	DP IB Physics
Section	5. Electricity & Magnetism
Topic	5.1 Electric Fields
Difficulty	Easy

Time allowed: 20

Score: /10

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

Identify the unit defined as 'the charge carried by an electric current of one ampere in one second'.

- A. Current.
- B. Potential difference.
- C. Coulomb.
- D. Ampere.

[1 mark]

Question 2

Two different equations can be used to calculate the same physical quantity, x.

$$x = \frac{\Delta q}{\Delta t}$$
 and $x = nAvq$

What quantity is represented by x?

- A. Drift velocity.
- B. Current.
- C. Charge on a charge carrier.
- D. Potential difference.

[1 mark]

Question 3

Select the correct quantity and unit for this definition;

'the rate of flow of electric charge past a cross-section of material'

	Quantity	Unit	
Α.	charge	coulomb	
В.	charge	ampere	
C.	current	coulomb	
D.	current	ampere	

Question 4

An electric field is a region of space in which an electric charge is subjected to a force. Electric fields can be represented with vector diagrams showing the direction of force around a point charge.

Select the pair of diagrams which correctly represent the field lines around a positive and negative charge.

Α.

В.

C.

D.

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 5

The diagram shows charged particles moving in a metallic material. Choose the line which correctly identifies the missing labels.

	1	2
A.	current	electric current
B.	voltage	drift speed
C.	voltage	electric current
D.	current	drift speed

[1 mark]

Question 6

Which of the following is a possible drift speed for delocalised electrons in a copper wire?

- $A.12 \times 10^{-8} \, \text{m s}^{-1}$
- $B.4.5 \times 10^{-4} \, \text{m s}^{-1}$
- $C.8.6\,m\,s^{-1}$
- $D.3.0 \times 10^8 \, \text{m s}^{-1}$

Headto <u>savemyexams.co.uk</u> for more awesome resources

Question 7

\	حرج جحائيت حجاجين		ب عکامات مامک	والمراجع المراجع المراجع
Which statement correctly	y describes a p	горепу	or the arift v	elocity, v.

- A. v is indirectly proportional to current, I
- B. v is directly proportional the to charge carrier density, n
- C. v is directly proportional to current, I
- D. v is directly proportional the to cross-sectional area of the conductor, A

[1 mark]

Question 8

Determine the energy of 4 eV in Joules.

$$A.6.4 \times 10^{-19} J$$

B.
$$6.4 \times 10^{-13}$$
 J

C. 6.4 J

D. 2.1J

[1 mark]

Question 9

Identify the electrical item most likely to use direct current.

- A. Washing machine.
- B. Laptop.
- C. Reading lamp.
- D. Kettle.

Question 10

For electric field strength, identify the correct equation and description of the diagram.

	Equation	Description
A.	$E = \frac{F}{q}$	The strength of the electric field is proportional to the number of lines per unit cross-sectional area
В.	$E = \frac{F}{q}$	The strength of the electric field is indirectly proportional to the number of lines per unit cross-sectional area
C.	$F = \frac{E}{q}$	The strength of the electric field is proportional to the number of lines per unit cross-sectional area
D.	$F = \frac{E}{q}$	The strength of the electric field is indirectly proportional to the number of lines per unit cross-sectional area