

1.5 Further Proof & Reasoning

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.5 Further Proof & Reasoning
Difficulty	Hard

Time allowed:	80
Score:	/64
Percentage:	/100

SaveMyExams

Head to savemy exams.co.uk for more a we some resources

Question 1

Prove that the equation $kx^2 - 2(k+1)x - 3k = 0$ has distinct real solutions for all values of k, where $k \in \mathbb{R}$.

[4 marks]

Question 2

Prove by mathematical induction that $9^{2n} - 1$, $n \in \mathbb{Z}$, $n \ge 1$ is divisible by 16.

[4 marks]

Question 3

Prove by contradiction that $\sqrt{10}$ is irrational.

[4 marks]

Prove by exhaustion that the sum of two consecutive square numbers between 100 and 200 is an odd number.

[4 marks]

Question 5

The three statements below are false.

In each case verify the statement is false by use of a counter example and state an alternative domain that would make the statement true.

```
(i)
n^2 > 2n, n \in \mathbb{Z}^+
```

```
(ii) 2^n - 1 \text{ is a prime number for } n \in N, \ 1 < n \le 4. (iii) 5^n > 3^n + 4^n, \ n \in \mathbb{Z}^+
```

[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6

Use mathematical induction to prove that the *n*th derivative of the function $f(x) = \frac{5}{x}$ is given by

 $\frac{5(-1)^n n!}{x^{(n+1)}}$

for all integers, n, where $n \ge 1$.

[6 marks]

Question 7

Prove that $a^2 - 8b - 11 \neq 0$ if $a, b \in \mathbb{Z}$.

[6 marks]

The product of three consecutive integers is added to the middle integer.

Prove that the result is a perfect cube.

[4 marks]

Question 9

Prove by mathematical induction, that for $n \in \mathbb{Z}^+$,

$$1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right)^3 + \dots + n\left(\frac{1}{2}\right)^{n-1} = 4 - \frac{n+2}{2^{n-1}}$$

[6 marks]

Use a contradiction to prove that the difference between a rational number and an irrational number is irrational.

[6 marks]

Question 11

Prove that there are no non-zero real values of a and b such that $(a + bi)^2 = a + bi$.

[4 marks]

Page 6 of 8

Prove by mathematical induction that if $f(x) = xe^{2x}$ then $f^{(n)}(x) = (2^nx + n2^{n-1})e^{2x}$.

[6 marks]

Question 13

Prove by mathematical induction that

 $(\cos \theta - i \sin \theta)^n = \cos(n\theta) - i \sin(n\theta)$, for all $n \in \mathbb{Z}^+$

[6 marks]

Page 8 of 8