

14.2 Further Aspects of Bonding

Question Paper

Course	DP IB Chemistry
Section	14. Chemical Bonding & Structure (HL only)
Topic	14.2 Further Aspects of Bonding
Difficulty	Hard

Time allowed: 10

Score: /5

Percentage: /100

 $Head to \underline{save my exams.co.uk} for more awe some resources$

Q

Question I	
Which species can be represented with only one Lewis structure?	
$A. H_2PO_4^-$	
B. O ₃	
C.CH ₃ COCH ₃	
D. 1,3 cyclohexadiene	
	[1 mark]
Question 2	
In which group do both compounds contain delocalised electrons?	
A. K_2CO_3 and cyclohexene, C_6H_{10}	
B. KOH and methybenzene, C_7H_8	
C. KHCO $_3$ and buta-1,3-diene, C $_4$ H $_6$	
D. Methanol and sodium methanoate, HCOONa	
	[1 mark]
Question 3	
Which of the following are intermediate species in the catalytic depletion of ozone?	
I. CIO•	
II. NO•	
III. NO ₂ •	
A. I and II only	
B. I and III only	
C. II only	
D. I, II and III	
	[1 mark]

Question 4

Which is **not** a correct statement about sp^3 hybridised carbons?

- A. They can form sigma or pi bonds
- B. They have the electron arrangement 1s²2s¹2p³
- C. They have four bonding orbitals of equal energy
- D. The bonding orbitals have 1/4 s character and 3/4 p character

[1 mark]

Question 5

The structure of the painkiller paracetamol, often known as acetaminophen, is shown below:

Which of the following is not present in the structure?

- A. 5 Ione pairs
- B. 7 atoms with bond angles of 120° around them
- C. 8 atoms with sp² hybrid orbitals
- D. 16 sigma (σ) bonds

[1 mark]