Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

User interface language: English | Español

Date May Example question Marks available 3 Reference code EXM.2.AHL.TZ0.16
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Hence and Find Question number 16 Adapted from N/A

Question

The matrices A and B are defined by A=(3224) and B=(1001).

Triangle X is mapped onto triangle Y by the transformation represented by AB. The coordinates of triangle Y are (0, 0), (−30, −20) and (−16, 32).

Describe fully the geometrical transformation represented by B.

[2]
a.

Find the coordinates of triangle X.

[5]
b.

Find the area of triangle X.

[2]
c.i.

Hence find the area of triangle Y.

[3]
c.ii.

Matrix A represents a combination of transformations:            

A stretch, with scale factor 3 and y-axis invariant;
Followed by a stretch, with scale factor 4 and x-axis invariant;
Followed by a transformation represented by matrix C.

Find matrix C.

[4]
d.

Markscheme

reflection in the y-axis     A1A1

[2 marks]

a.

X=(AB)1Y         M1

EITHER

AB=(3224), so (AB)1=(141818316)         M1A1

OR

X=B1A1Y         M1A1

THEN

X=(0100008)         (A1)

So the coordinates are (0, 0), (10, 0) and (0, 8).        A1

[5 marks]

b.

10×82=40 units2       M1A1

[2 marks]

c.i.

det(AB)=16       M1A1

Area =40×16=640 units2       A1

[3 marks]

c.ii.

A stretch, with scale factor 3 and y-axis invariant is given by (3001)       A1

A stretch, with scale factor 4 and x-axis invariant is given by (1004)       A1

So C=A(3001)1(1004)1=(112231)       M1A1

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 3—Geometry and trigonometry » AHL 3.9—Matrix transformations
Show 36 related questions
Topic 3—Geometry and trigonometry

View options