Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2009 Marks available 11 Reference code 09N.2.hl.TZ0.10
Level HL only Paper 2 Time zone TZ0
Command term Find and State Question number 10 Adapted from N/A

Question

Consider the function f , defined by f(x)=xax , where x, a \in {\mathbb{R}^ + } .

(a)     Find in terms of a

  (i)     the zeros of f ;

  (ii)     the values of x for which f is decreasing;

  (iii)     the values of x for which f is increasing;

  (iv)     the range of f .

(b)     State the concavity of the graph of f .

Markscheme

(a)

(i)     x - a\sqrt x     M1

 \sqrt x \sqrt x  - a = 0     (A1)

  2 x = 0, x = {a^2}     A1     N2

(ii)     f'(x) = 1 - \frac{a}{{2\sqrt x }}     A1

  f is decreasing when f' < 0     (M1)

  1 - \frac{a}{{2\sqrt x }} < 0 \Rightarrow \frac{{2\sqrt x  - a}}{{2\sqrt x }} < 0 \Rightarrow x > \frac{{{a^2}}}{4}     A1

(iii)     f is increasing when f' > 0

   1 - \frac{a}{{2\sqrt x }} > 0 \Rightarrow \frac{{2\sqrt x  - a}}{{2\sqrt x }} > 0 \Rightarrow x > \frac{{{a^2}}}{4}     A1

  Note: Award the M1 mark for either (ii) or (iii).

(iv)     minimum occurs at x = \frac{{{a^2}}}{4}

   minimum value is y = - \frac{{{a^2}}}{4}     (M1)A1

   hence y \geqslant  - \frac{{{a^2}}}{4}     A1

[10 marks]

 

(b)     concave up for all values of x     R1

[1 mark]

 

Total [11 marks]

Examiners report

This was generally a well answered question.

Syllabus sections

Topic 6 - Core: Calculus » 6.3 » Graphical behaviour of functions, including the relationship between the graphs of f , {f'} and {f''} .

View options