Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Copy and complete Question number 4 Adapted from N/A

Question

The binary operation is defined on the set T={0, 2, 3, 4, 5, 6} by ab=(a+bab)(mod.

Copy and complete the following Cayley table for \{ T,{\text{ }} * \} .

[4]
a.

Prove that \{ T,{\text{ }} * \} forms an Abelian group.

[7]
b.

Find the order of each element in T.

[4]
c.

Given that \{ H,{\text{ }} * \} is the subgroup of \{ T,{\text{ }} * \} of order 2, partition T into the left cosets with respect to H.

[3]
d.

Markscheme

Cayley table is

     A4

award A4 for all 16 correct, A3 for up to 2 errors, A2 for up to 4 errors, A1 for up to 6 errors

[4 marks]

a.

closed as no other element appears in the Cayley table     A1

symmetrical about the leading diagonal so commutative     R1

hence it is Abelian

0 is the identity

as x * 0( = 0 * x) = x + 0 - 0 = x     A1

0 and 2 are self inverse, 3 and 5 is an inverse pair, 4 and 6 is an inverse pair     A1

 

Note:     Accept “Every row and every column has a 0 so each element has an inverse”.

 

(a * b) * c = (a + b - ab) * c = a + b - ab + c - (a + b - ab)c     M1

= a + b + c - ab - ac - bc + abc     A1

a * (b * c) = a * (b + c - bc) = a + b + c - bc - a(b + c - bc)     A1

= a + b + c - ab - ac - bc + abc

so (a * b) * c = a * (b * c) and * is associative

 

Note:     Inclusion of mod 7 may be included at any stage.

[7 marks]

 

b.

0 has order 1 and 2 has order 2    A1

{3^2} = 4,{\text{ }}{3^3} = 2,{\text{ }}{3^4} = 6,{\text{ }}{3^5} = 5,{\text{ }}{3^6} = 0 so 3 has order 6     A1

{4^2} = 6,{\text{ }}{4^3} = 0 so 4 has order 3     A1

5 has order 6 and 6 has order 3     A1

[4 marks]

c.

H = \{ 0,{\text{ }}2\}     A1

0 * \{ 0,{\text{ }}2\}  = \{ 0,{\text{ }}2\} ,{\text{ }}2 * \{ 0,{\text{ }}2\}  = \{ 2,{\text{ }}0\} ,{\text{ }}3 * \{ 0,{\text{ }}2\}  = \{ 3,{\text{ }}6\} ,{\text{ }}4 * \{ 0,{\text{ }}2\}  = \{ 4,{\text{ }}5\} ,

5 * \{ 0,{\text{ }}2\}  = \{ 5,{\text{ }}4\} ,{\text{ }}6 * \{ 0,{\text{ }}2\}  = \{ 6,{\text{ }}3\}     M1

 

Note:     Award the M1 if sufficient examples are used to find at least two of the cosets.

 

so the left cosets are \{ 0,{\text{ }}2\} ,{\text{ }}\{ 3,{\text{ }}6\} ,{\text{ }}\{ 4,{\text{ }}5\}     A1

[3 marks]

Total [18 marks]

d.

Examiners report

 

 

 

a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.4 » Operation tables (Cayley tables).

View options