User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.3srg.hl.TZ0.4
Level HL only Paper Paper 3 Sets, relations and groups Time zone TZ0
Command term Copy and complete Question number 4 Adapted from N/A

Question

The binary operation \( * \) is defined on the set \(T = \{ 0,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6\} \) by \(a * b = (a + b - ab)(\bmod 7),{\text{ }}a,{\text{ }}b \in T\).

Copy and complete the following Cayley table for \(\{ T,{\text{ }} * \} \).

[4]
a.

Prove that \(\{ T,{\text{ }} * \} \) forms an Abelian group.

[7]
b.

Find the order of each element in \(T\).

[4]
c.

Given that \(\{ H,{\text{ }} * \} \) is the subgroup of \(\{ T,{\text{ }} * \} \) of order \(2\), partition \(T\) into the left cosets with respect to \(H\).

[3]
d.

Markscheme

Cayley table is

     A4

award A4 for all 16 correct, A3 for up to 2 errors, A2 for up to 4 errors, A1 for up to 6 errors

[4 marks]

a.

closed as no other element appears in the Cayley table     A1

symmetrical about the leading diagonal so commutative     R1

hence it is Abelian

\(0\) is the identity

as \(x * 0( = 0 * x) = x + 0 - 0 = x\)     A1

\(0\) and \(2\) are self inverse, \(3\) and \(5\) is an inverse pair, \(4\) and \(6\) is an inverse pair     A1

 

Note:     Accept “Every row and every column has a \(0\) so each element has an inverse”.

 

\((a * b) * c = (a + b - ab) * c = a + b - ab + c - (a + b - ab)c\)     M1

\( = a + b + c - ab - ac - bc + abc\)     A1

\(a * (b * c) = a * (b + c - bc) = a + b + c - bc - a(b + c - bc)\)     A1

\( = a + b + c - ab - ac - bc + abc\)

so \((a * b) * c = a * (b * c)\) and \( * \) is associative

 

Note:     Inclusion of mod 7 may be included at any stage.

[7 marks]

 

b.

\(0\) has order \(1\) and \(2\) has order \(2\)    A1

\({3^2} = 4,{\text{ }}{3^3} = 2,{\text{ }}{3^4} = 6,{\text{ }}{3^5} = 5,{\text{ }}{3^6} = 0\) so \(3\) has order \(6\)     A1

\({4^2} = 6,{\text{ }}{4^3} = 0\) so \(4\) has order \(3\)     A1

\(5\) has order \(6\) and \(6\) has order \(3\)     A1

[4 marks]

c.

\(H = \{ 0,{\text{ }}2\} \)     A1

\(0 * \{ 0,{\text{ }}2\}  = \{ 0,{\text{ }}2\} ,{\text{ }}2 * \{ 0,{\text{ }}2\}  = \{ 2,{\text{ }}0\} ,{\text{ }}3 * \{ 0,{\text{ }}2\}  = \{ 3,{\text{ }}6\} ,{\text{ }}4 * \{ 0,{\text{ }}2\}  = \{ 4,{\text{ }}5\} ,\)

\(5 * \{ 0,{\text{ }}2\}  = \{ 5,{\text{ }}4\} ,{\text{ }}6 * \{ 0,{\text{ }}2\}  = \{ 6,{\text{ }}3\} \)     M1

 

Note:     Award the M1 if sufficient examples are used to find at least two of the cosets.

 

so the left cosets are \(\{ 0,{\text{ }}2\} ,{\text{ }}\{ 3,{\text{ }}6\} ,{\text{ }}\{ 4,{\text{ }}5\} \)     A1

[3 marks]

Total [18 marks]

d.

Examiners report

 

 

 

a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 8 - Option: Sets, relations and groups » 8.4 » Operation tables (Cayley tables).

View options