Processing math: 100%

User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.2.hl.TZ2.13
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 13 Adapted from N/A

Question

The equations of the lines L1 and L2 are

L1:r1=(122)+λ(112)

 

L2:r2=(124)+μ(216).

 

 

Show that the lines L1 and L2 are skew.

[4]
a.

Find the acute angle between the lines L1 and L2.

[4]
b.

(i)     Find a vector perpendicular to both lines.

(ii)     Hence determine an equation of the line L3 that is perpendicular to both L1 and L2 and intersects both lines.

[10]
c.

Markscheme

L1 and L2 are not parallel, since (112)k(216)     R1

if they meet, then 1λ=1+2μ and 2+λ=2+μ     M1

solving simultaneously λ=μ=0     A1

2+2λ=4+6μ24 contradiction,     R1

so lines are skew     AG

 

Note:     Do not award the second R1 if their values of parameters are incorrect.

[4 marks]

a.

(112)(216)(=11)=641cosθ     M1A1

cosθ=11246     (A1)

θ=45.5(0.794 radians)     A1

[4 marks]

b.

(i)     \(\left( {\begin{array}{*{20}{c}}

  { - 1} \\

  1 \\

  2

\end{array}} \right) \times \left( {\begin{array}{*{20}{c}}

  2 \\

  1 \\

  6

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {6 - 2} \\

  {4 + 6} \\

  { - 1 - 2}

\end{array}} \right)\)     (M1)

\( = \left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right) = 4{\mathbf{i}} + 10{\mathbf{j}} - 3{\mathbf{k}}\)     A1

(ii)     METHOD 1

let P be the intersection of L1 and L3

let Q be the intersection of L2 and L3

\(\overrightarrow {{\text{OP}}}  = \left( {\begin{array}{*{20}{c}}

  {1 - \lambda } \\

  {2 + \lambda } \\

  {2 + 2\lambda }

\end{array}} \right)\overrightarrow {{\text{OQ}}}  = \left( {\begin{array}{*{20}{c}}

  {1 + 2\mu } \\

  {2 + \mu } \\

  {4 + 6\mu }

\end{array}} \right)\)     M1

therefore \(\overrightarrow {{\text{PQ}}}  = \overrightarrow {{\text{OQ}}}  - \overrightarrow {{\text{OP}}}  = \left( {\begin{array}{*{20}{c}}

  {2\mu  + \lambda } \\

  {\mu  - \lambda } \\

  {2 + 6\mu  - 2\lambda }

\end{array}} \right)\)     M1A1

\(\left( {\begin{array}{*{20}{c}}

  {2\mu  + \lambda } \\

  {\mu  - \lambda } \\

  {2 + 6\mu  - 2\lambda }

\end{array}} \right) = t\left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right)\)     M1

2μ+λ4t=0

μλ10t=0

6μ2λ+3t=2

solving simultaneously     (M1)

λ=32125(0.256), μ=28125(0.224)     A1

 

Note:     Award A1 for either correct λ or μ.

 

EITHER

therefore \(\overrightarrow {{\text{OP}}}  = \left( {\begin{array}{*{20}{c}}

  {1 - \lambda } \\

  {2 + \lambda } \\

  {2 + 2\lambda }

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {\frac{{93}}{{125}}} \\

  {\frac{{282}}{{125}}} \\

  {\frac{{314}}{{125}}}

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {0.744} \\

  {2.256} \\

  {2.512}

\end{array}} \right)\)A1

therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}

  {0.744} \\

  {2.256} \\

  {2.512}

\end{array}} \right) + \alpha \left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right)\)     A1

OR

therefore \(\overrightarrow {{\text{OQ}}}  = \left( {\begin{array}{*{20}{c}}

  {1 + 2\mu } \\

  {2 + \mu } \\

  {4 + 6\mu }

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {\frac{{69}}{{125}}} \\

  {\frac{{222}}{{125}}} \\

  {\frac{{332}}{{125}}}

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {0.552} \\

  {1.776} \\

  {2.656}

\end{array}} \right)\)     A1

therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}

  {0.552} \\

  {1.776} \\

  {2.656}

\end{array}} \right) + \alpha \left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right)\)     A1

 

Note:     Allow position vector(s) to be expressed in decimal or fractional form.

METHOD 2

\({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}

  a \\

  b \\

  c

\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right)\)

forming two equations as intersections with L1 and L2

\(\left( {\begin{array}{*{20}{c}}

  a \\

  b \\

  c

\end{array}} \right) + {t_1}\left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  1 \\

  2 \\

  2

\end{array}} \right) + \lambda \left( {\begin{array}{*{20}{c}}

  { - 1} \\

  1 \\

  2

\end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}}

  a \\

  b \\

  c

\end{array}} \right) + {t_2}\left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  1 \\

  2 \\

  4

\end{array}} \right) + \mu \left( {\begin{array}{*{20}{c}}

  2 \\

  1 \\

  6

\end{array}} \right)\)     M1A1A1

 

Note:     Only award M1A1A1 if two different parameters t1, t2 used.

 

attempting to solve simultaneously     M1

λ=32125(0.256), μ=28125(0.224)     A1

 

Note:     Award A1 for either correct λ or μ.

 

EITHER

\(\left( {\begin{array}{*{20}{c}}

  a \\

  b \\

  c

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {0.552} \\

  {1.776} \\

  {2.656}

\end{array}} \right)\)     A1

therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}

  {0.552} \\

  {1.776} \\

  {2.656}

\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right)\)     A1A1

OR

\(\left( {\begin{array}{*{20}{c}}

  a \\

  b \\

  c

\end{array}} \right) = \left( {\begin{array}{*{20}{c}}

  {0.744} \\

  {2.256} \\

  {2.512}

\end{array}} \right)\)     A1

therefore \({L_3}:{r_3} = \left( {\begin{array}{*{20}{c}}

  {0.744} \\

  {2.256} \\

  {2.512}

\end{array}} \right) + t\left( {\begin{array}{*{20}{c}}

  4 \\

  {10} \\

  { - 3}

\end{array}} \right)\)     A1A1

 

Note:     Allow position vector(s) to be expressed in decimal or fractional form.

10 marks

Total [18 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4 - Core: Vectors » 4.3 » The angle between two lines.

View options