Date | May 2015 | Marks available | 2 | Reference code | 15M.1.hl.TZ2.9 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | State | Question number | 9 | Adapted from | N/A |
Question
State the set of values of \(a\) for which the function \(x \mapsto {\log _a}x\) exists, for all \(x \in {\mathbb{R}^ + }\).
Given that \({\log _x}y = 4{\log _y}x\), find all the possible expressions of \(y\) as a function of \(x\).
Markscheme
\(a > 0\) A1
\(a \ne 0\) A1
[2 marks]
METHOD 1
\({\log _x}y = \frac{{\ln y}}{{\ln x}}\) and \({\log _y}x = \frac{{\ln x}}{{\ln y}}\) M1A1
Note: Use of any base is permissible here, not just “e”.
\({\left( {\frac{{\ln y}}{{\ln x}}} \right)^2} = 4\) A1
\(\ln y = \pm 2\ln x\) A1
\(y = {x^2}\;\;\;\)or\(\;\;\;\frac{1}{{{x^2}}}\) A1A1
METHOD 2
\({\log _y}x = \frac{{{{\log }_x}x}}{{{{\log }_x}y}} = \frac{1}{{{{\log }_x}y}}\) M1A1
\({({\log _x}y)^2} = 4\) A1
\({\log _x}y = \pm 2\) A1
\(y = {x^2}\;\;\;\)or\(\;\;\;y = \frac{1}{{{x^2}}}\) A1A1
Note: The final two A marks are independent of the one coming before.
[6 marks]
Total [8 marks]