User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.hl.TZ2.9
Level HL only Paper 1 Time zone TZ2
Command term Find Question number 9 Adapted from N/A

Question

The points A, B, C and D have position vectors a, b, c and d, relative to the origin O.

It is given that \(\mathop {{\text{AB}}}\limits^ \to   = \mathop {{\text{DC}}}\limits^ \to  \).

The position vectors \(\mathop {{\text{OA}}}\limits^ \to  \), \(\mathop {{\text{OB}}}\limits^ \to  \), \(\mathop {{\text{OC}}}\limits^ \to  \) and \(\mathop {{\text{OD}}}\limits^ \to  \) are given by

a = i + 2j − 3k

b = 3ij + pk

c = qi + j + 2k

d = −i + rj − 2k

where p , q and r are constants.

The point where the diagonals of ABCD intersect is denoted by M.

The plane \(\Pi \) cuts the x, y and z axes at X , Y and Z respectively.

Explain why ABCD is a parallelogram.

[1]
a.i.

Using vector algebra, show that \(\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  \).

[3]
a.ii.

Show that p = 1, q = 1 and r = 4.

[5]
b.

Find the area of the parallelogram ABCD.

[4]
c.

Find the vector equation of the straight line passing through M and normal to the plane \(\Pi \) containing ABCD.

[4]
d.

Find the Cartesian equation of \(\Pi \).

[3]
e.

Find the coordinates of X, Y and Z.

[2]
f.i.

Find YZ.

[2]
f.ii.

Markscheme

a pair of opposite sides have equal length and are parallel      R1

hence ABCD is a parallelogram      AG

[1 mark]

a.i.

attempt to rewrite the given information in vector form       M1

ba = cd      A1

rearranging d − a = c − b       M1

hence  \(\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  \)     AG

Note: Candidates may correctly answer part i) by answering part ii) correctly and then deducing there
are two pairs of parallel sides.

[3 marks]

a.ii.

EITHER

use of \(\mathop {{\text{AB}}}\limits^ \to   = \mathop {{\text{DC}}}\limits^ \to  \)     (M1)

\(\left( \begin{gathered}
2 \hfill \\
- 3 \hfill \\
p + 3 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
q + 1 \hfill \\
1 - r \hfill \\
4 \hfill \\
\end{gathered} \right)\)       A1A1

OR

use of \(\mathop {{\text{AD}}}\limits^ \to   = \mathop {{\text{BC}}}\limits^ \to  \)      (M1)

\(\left( \begin{gathered}
- 2 \hfill \\
r - 2 \hfill \\
1 \hfill \\
\end{gathered} \right) = \left( \begin{gathered}
q - 3 \hfill \\
2 \hfill \\
2 - p \hfill \\
\end{gathered} \right)\)      A1A1

THEN

attempt to compare coefficients of i, j, and k in their equation or statement to that effect       M1

clear demonstration that the given values satisfy their equation       A1
p = 1, q = 1, r = 4       AG

[5 marks]

b.

attempt at computing \(\mathop {{\text{AB}}}\limits^ \to  \, \times \mathop {{\text{AD}}}\limits^ \to  \) (or equivalent)       M1

\(\left( \begin{gathered}
- 11 \hfill \\
- 10 \hfill \\
- 2 \hfill \\
\end{gathered} \right)\)     A1

area \( = \left| {\mathop {{\text{AB}}}\limits^ \to  \, \times \mathop {{\text{AD}}}\limits^ \to  } \right|\left( { = \sqrt {225} } \right)\)      (M1)

= 15       A1

[4 marks]

c.

valid attempt to find \(\mathop {{\text{OM}}}\limits^ \to   = \left( {\frac{1}{2}\left( {a + c} \right)} \right)\)      (M1)

\(\left( \begin{gathered}
1 \hfill \\
\frac{3}{2} \hfill \\
- \frac{1}{2} \hfill \\
\end{gathered} \right)\)     A1

the equation is

r = \(\left( \begin{gathered}
1 \hfill \\
\frac{3}{2} \hfill \\
- \frac{1}{2} \hfill \\
\end{gathered} \right) + t\left( \begin{gathered}
11 \hfill \\
10 \hfill \\
2 \hfill \\
\end{gathered} \right)\) or equivalent       M1A1

Note: Award maximum M1A0 if 'r = …' (or equivalent) is not seen.

[4 marks]

d.

attempt to obtain the equation of the plane in the form ax + by + cz = d       M1

11x + 10y + 2z = 25      A1A1

Note: A1 for right hand side, A1 for left hand side.

[3 marks]

e.

putting two coordinates equal to zero       (M1)

\({\text{X}}\left( {\frac{{25}}{{11}},\,0,\,0} \right),\,\,{\text{Y}}\left( {0,\,\frac{5}{2},\,0} \right),\,\,{\text{Z}}\left( {0,\,0,\,\frac{{25}}{2}} \right)\)      A1

[2 marks]

f.i.

\({\text{YZ}} = \sqrt {{{\left( {\frac{5}{2}} \right)}^2} + {{\left( {\frac{{25}}{2}} \right)}^2}} \)     M1

\( = \sqrt {\frac{{325}}{2}} \left( { = \frac{{5\sqrt {104} }}{4} = \frac{{5\sqrt {26} }}{2}} \right)\)     A1

[4 marks]

f.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.i.
[N/A]
f.ii.

Syllabus sections

Topic 4 - Core: Vectors » 4.6 » Vector equation of a plane \(r = a + \lambda b + \mu c\) .

View options