Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2017 Marks available 2 Reference code 17N.2.hl.TZ0.11
Level HL only Paper 2 Time zone TZ0
Command term Determine Question number 11 Adapted from N/A

Question

Consider the function f(x)=2sin2x+7sin2x+tanx9, 0.

Let u = \tan x.

Determine an expression for f’(x) in terms of x.

[2]
a.i.

Sketch a graph of y = f’(x) for 0 \leqslant x < \frac{\pi }{2}.

[4]
a.ii.

Find the x-coordinate(s) of the point(s) of inflexion of the graph of y = f(x), labelling these clearly on the graph of y = f’(x).

[2]
a.iii.

Express \sin x in terms of \mu .

[2]
b.i.

Express \sin 2x in terms of u.

[3]
b.ii.

Hence show that f(x) = 0 can be expressed as {u^3} - 7{u^2} + 15u - 9 = 0.

[2]
b.iii.

Solve the equation f(x) = 0, giving your answers in the form \arctan k where k \in \mathbb{Z}.

[3]
c.

Markscheme

f’(x) = 4\sin x\cos x + 14\cos 2x + {\sec ^2}x (or equivalent)     (M1)A1

[2 marks]

a.i.

N17/5/MATHL/HP2/ENG/TZ0/11.a.ii/M     A1A1A1A1

 

Note:     Award A1 for correct behaviour at x = 0, A1 for correct domain and correct behaviour for x \to \frac{\pi }{2}, A1 for two clear intersections with x-axis and minimum point, A1 for clear maximum point.

 

[4 marks]

a.ii.

x = 0.0736     A1

x = 1.13     A1

[2 marks]

a.iii.

attempt to write \sin x in terms of u only     (M1)

\sin x = \frac{u}{{\sqrt {1 + {u^2}} }}     A1

[2 marks]

b.i.

\cos x = \frac{1}{{\sqrt {1 + {u^2}} }}     (A1)

attempt to use \sin 2x = 2\sin x\cos x{\text{ }}\left( { = 2\frac{u}{{\sqrt {1 + {u^2}} }}\frac{1}{{\sqrt {1 + {u^2}} }}} \right)     (M1)

\sin 2x = \frac{{2u}}{{1 + {u^2}}}     A1

[3 marks]

b.ii.

2{\sin ^2}x + 7\sin 2x + \tan x - 9 = 0

\frac{{2{u^2}}}{{1 + {u^2}}} + \frac{{14u}}{{1 + {u^2}}} + u - 9{\text{ }}( = 0)     M1

\frac{{2{u^2} + 14u + u(1 + {u^2}) - 9(1 + {u^2})}}{{1 + {u^2}}} = 0 (or equivalent)     A1

{u^3} - 7{u^2} + 15u - 9 = 0     AG

[2 marks]

b.iii.

u = 1 or u = 3     (M1)

x = \arctan (1)     A1

x = \arctan (3)     A1

 

Note:     Only accept answers given the required form.

 

[3 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.1 » Higher derivatives.

View options