User interface language: English | Español

Date None Specimen Marks available 1 Reference code SPNone.1.hl.TZ0.14
Level HL only Paper 1 Time zone TZ0
Command term State Question number 14 Adapted from N/A

Question

The set \(S\) contains the eight matrices of the form\[\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\]where \(a\), \(b\), \(c\) can each take one of the values \( + 1\) or \( - 1\) .

Show that any matrix of this form is its own inverse.

[3]
a.

Show that \(S\) forms an Abelian group under matrix multiplication.

[9]
b.

Giving a reason, state whether or not this group is cyclic.

[1]
c.

Markscheme

\(\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
a&0&0\\
0&b&0\\
0&0&c
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a^2}}&0&0\\
0&{{b^2}}&0\\
0&0&{{c^2}}
\end{array}} \right)\)
     A1M1

\( = \left( {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0\\
0&0&1
\end{array}} \right)\)
     A1

this shows that each matrix is self-inverse

[3 marks]

a.

closure:

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)    
M1A1

\( = \left( {\begin{array}{*{20}{c}}
{{a_3}}&0&0\\
0&{{b_3}}&0\\
0&0&{{c_3}}
\end{array}} \right)\)

where each of \({a_3}\), \({b_3}\), \({c_3}\) can only be \( \pm 1\)     A1

this proves closure

identity: the identity matrix is the group identity     A1

inverse: as shown above, every element is self-inverse     A1

associativity: this follows because matrix multiplication is associative     A1

\(S\) is therefore a group     AG

Abelian:

\(\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_2}{a_1}}&0&0\\
0&{{b_2}{b_1}}&0\\
0&0&{{c_2}{c_1}}
\end{array}} \right)\)    
A1

\(\left( {\begin{array}{*{20}{c}}
{{a_1}}&0&0\\
0&{{b_1}}&0\\
0&0&{{c_1}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_2}}&0&0\\
0&{{b_2}}&0\\
0&0&{{c_2}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{{a_1}{a_2}}&0&0\\
0&{{b_1}{b_2}}&0\\
0&0&{{c_1}{c_2}}
\end{array}} \right)\)    
A1

Note: Second line may have been shown whilst proving closure, however a reference to it must be made here.

 

we see that the same result is obtained either way which proves commutativity so that the group is Abelian      R1

[9 marks]

b.

since all elements (except the identity) are of order \(2\), the group is not cyclic (since \(S\) contains \(8\) elements)     R1

[1 mark]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.9 » Cyclic groups.

View options