User interface language: English | Español

Date None Specimen Marks available 6 Reference code SPNone.1.hl.TZ0.3
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 3 Adapted from N/A

Question

The positive integer \(N\) is represented by \(4064\) in base \(b\) and \(2612\) in base \(b + 1\) .

Determine the value of \(b\) .

[4]
a.

Find the representation of \(N\)

  (i) in base \(10\);

  (ii) in base \(12\).

[6]
b.

Markscheme

the equation satisfied by \(b\) is

\(4{b^3} + 6b + 4 = 2{(b + 1)^3} + 6{(b + 1)^2} + (b + 1) + 2\)     M1A1

\(2{b^3} - 12{b^2} - 13b - 7 = 0\)     (A1)

\(b = 7\)     A1

[4 marks]

a.

(i)     \(N = 4 \times {7^3} + 6 \times 7 + 4 = 1418\)

or \(N = 2 \times {8^3} + 6 \times {8^2} + 1 \times 8 + 2 = 1418\)     (M1)A1

 

(ii)     \(12\left| \!{\underline {\,
  {1418} \,}} \right. \)     (M1)

\(12\left| \!{\underline {\,
  {118} \,}} \right. \) remainder \(2\)     (A1)

\(12\left| \!{\underline {\,
  9 \,}} \right. \) remainder A (where A \( = 10\) )     (A1)

\(1418 = {(9{\rm{A}}2)_{12}}\)     A1

Note: Accept alternative correct methods.

 

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.5 » Representation of integers in different bases.

View options