Date | May 2007 | Marks available | 5 | Reference code | 07M.1.hl.TZ0.4 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Show that | Question number | 4 | Adapted from | N/A |
Question
Use the Euclidean Algorithm to show that \(275\) and \(378\) are relatively prime.
Find the general solution to the diophantine equation \(275x + 378y = 1\) .
Markscheme
\(378 = 1 \times 275 + 103\) A1
\(275 = 2 \times 103 + 69\) A1
\(103 = 1 \times 69 + 34\) A1
\(69 = 2 \times 34 + 1\) A1
showing that gcd \( = 1\) , i.e. relatively prime. R1
[5 marks]
Working backwards,
\(1 = 69 - 2 \times (103 - 69)\) (M1)
\( = 3 \times 69 - 2 \times 103\) (A1)
\( = 3 \times (275 - 2 \times 103) - 2 \times 103\)
\( = 3 \times 275 - 8 \times 103\) (A1)
\( = 3 \times 275 - 8 \times (378 - 275)\)
\( = 11 \times 275 - 8 \times 378\) (A1)
A solution is \(x = 11\) , \(y = - 8\) (A1)
The general solution is \(x = 11 + 378n\) , \(y = - 8 - 275n\) where \(n \in \mathbb{Z}\) M1A1 N6
[7 marks]