Loading [MathJax]/jax/output/CommonHTML/jax.js

User interface language: English | Español

Date May 2008 Marks available 3 Reference code 08M.1.hl.TZ0.2
Level HL only Paper 1 Time zone TZ0
Command term Solve Question number 2 Adapted from N/A

Question

The group {G,} is defined on the set G={1,2,3,4,5,6} where denotes multiplication modulo 7.

Draw the Cayley table for {G,} .

[3]
a.

(i)     Determine the order of each element of {G,} .

(ii)     Find all the proper subgroups of {G,} .

[6]
b.

Solve the equation x6x=3 where xG .

[3]
c.

Markscheme


     A3

Note: Award A2 for 1 error, A1 for 2 errors, A0 for 3 or more errors.

[3 marks]

a.

(i)     We first identify 1 as the identity     (A1)

Order of 1=1

Order of 2=3

Order of 3=6

Order of 4=3

Order of 5=6

Order of 6=2     A3

Note: Award A2 for 1 error, A1 for 2 errors, A0 for more than 2 errors.

 

(ii)     {1,6} ; {1,2,4}     A1A1

 

[6 marks]

b.

The equation is equivalent to

6xx=3     M1

xx=4

x=2 or 5     A1A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.7 » Abelian groups.

View options