Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2018 Marks available 9 Reference code 18M.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Prove Question number 12 Adapted from N/A

Question

Solve the recurrence relation un=4un14un2 given that u0=u1=1.

[6]
a.

Consider vn which satisfies the recurrence relation 2vn=7vn13vn2 subject to the initial conditions v0=v1=1.

Prove by using strong induction that vn=45(12)n+15(3)n for nN.

[9]
b.

Markscheme

auxiliary equation is m24m+4=0      M1A1

hence m has a repeated root of 2     (A1)

solution is of the form un=a(2)n+bn(2)n     M1

using the initial conditions      M1

a=1 and b=12

un=2nn2(2)n      A1

[6 marks]

a.

vn=45(12)n+15(3)n

let n=0  v0=45(12)0+15(3)0=45+15=1

let n=1  v1=45(12)1+15(3)1=25+35=1

hence true for n=0 and n=1       M1A1

assume that vj=45(12)j+15(3)j is true for all j>k+1       M1

hence vk=45(12)k+15(3)k and vk1=45(12)k1+15(3)k1

vk+1=7vk3vk12

vk+1=7[45(12)k+15(3)k]3[45(12)k1+15(3)k1]2      M1A1

vk+1=7[85(12)k+1+115(3)k+1]3[165(12)k+1+145(3)k+1]2       (A1)

vk+1=565(12)k+1+715(3)k+1485(12)k+1115(3)k+12       (A1)

vk+1=85(12)k+1+615(3)k+12       (A1)

Note: Only one of the above (A1) can be implied.

vk+1=45(12)k+1+115(3)k+1

since the basis step and the inductive step have been verified, the Principle of Mathematical Induction tells us that vn=45(12)n+15(3)n is
the general solution        R1

[9 marks]

Note: Only award final R1 if at least 5 previous marks have been awarded.

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Discrete mathematics » 6.1 » Strong induction.

View options