User interface language: English | Español

Date May 2018 Marks available 3 Reference code 18M.1.hl.TZ0.7
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 7 Adapted from N/A

Question

A sample of size 100 is taken from a normal population with unknown mean μ and known variance 36.

Another investigator decides to use the same data to test the hypotheses H0 : μ = 65 , H1 : μ = 67.9.

An investigator wishes to test the hypotheses H0 : μ = 65, H1 : μ > 65.

He decides on the following acceptance criteria:

Accept H0 if the sample mean \(\bar x\) ≤ 66.5

Accept H1 if \(\bar x\) > 66.5

Find the probability of a Type I error.

[3]
a.

She decides to use the same acceptance criteria as the previous investigator. Find the probability of a Type II error.

[3]
b.i.

Find the critical value for \({\bar x}\) if she wants the probabilities of a Type I error and a Type II error to be equal.

[3]
b.ii.

Markscheme

\(\bar X \sim {\text{N}}\left( {\mu ,\,\frac{{{\sigma ^2}}}{n}} \right)\)

\(\bar X \sim {\text{N}}\left( {65,\,\frac{{36}}{{100}}} \right)\)     (A1)

P(Type I Error) \( = {\text{P}}\left( {\bar X > 66.5} \right)\)      (M1)

= 0.00621       A1

[3 marks]

a.

P(Type II Error) = P(accept H0 | H1 is true)

\( = {\text{P}}\left( {\bar X \leqslant 66.5\left| {\mu  = 67.9} \right.} \right)\)        (M1)

\( = {\text{P}}\left( {\bar X \leqslant 66.5} \right)\) when \(\bar X \sim {\text{N}}\left( {67.9,\,\frac{{36}}{{100}}} \right)\)        (M1)

= 0.00982      A1

[3 marks]

b.i.

the variances of the distributions given by H0 and H1 are equal,       (R1)

by symmetry the value of \({\bar x}\) lies midway between 65 and 67.9      (M1)

\( \Rightarrow \bar x = \frac{1}{2}\left( {65 + 67.9} \right) = 66.45\)       A1

[3 marks]

b.ii.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 4 - Sets, relations and groups » 4.1 » Finite and infinite sets. Subsets.

View options