Date | May 2018 | Marks available | 4 | Reference code | 18M.1.hl.TZ0.1 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find | Question number | 1 | Adapted from | N/A |
Question
Use the Euclidean algorithm to find the greatest common divisor of 74 and 383.
Hence find integers s and t such that 74s + 383t = 1.
Markscheme
383 = 5 × 74 + 13 M1
74 = 5 × 13 + 9 A1
13 = 1 × 9 + 4 (A1)
9 = 2 × 4 + 1
4 = 4 × 1 + 0
⇒ gcd (74, 383) = 1 A1
[4 marks]
EITHER
1 = 9 − 2 × 4 (M1)
= 9 − 2(13 − 1 × 9) = 3 × 9 − 2 × 13 (A1)
= 3(74 − 5 × 13) − 2 × 13 = 3 × 74 − 17 × 13 (A1)
= 3 × 74 − 17 (383 − 5 × 74) = 88 × 74 − 17 × 383
OR
13 = 383 − 5 × 74 (M1)
9 = 74 − 5 × 13
= 74 − 5(383 − 5 × 74)
= 26 × 74 − 5 × 383 (A1)
4 = 13 − 9
= (383 − 5 × 74) − (26 × 74 − 5 × 383)
= 6 × 383 − 31 × 74 (A1)
1 = 9 − 2 × 4
= (26 × 74 − 5 × 383) − 2(6 × 383 − 31 × 74)
= 88 × 74 − 17 × 383
THEN
⇒ s = 88 and t = − 17 A1A1
[5 marks]