Processing math: 10%

User interface language: English | Español

Date May 2014 Marks available 12 Reference code 14M.1.hl.TZ0.4
Level HL only Paper 1 Time zone TZ0
Command term Find and Show that Question number 4 Adapted from N/A

Question

The matrix M is defined by M = (abcd).

 

The eigenvalues of M are denoted by λ1, λ2.

(a)     Show that λ1+λ2=a+d and λ1λ2=det(M).

(b)     Given that a + b = c + d = 1, show that 1 is an eigenvalue of M.

(c)     Find eigenvectors for the matrix \left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right).

Markscheme

(a)     the eigenvalues satisfy \left| {\begin{array}{*{20}{c}}   {a - \lambda }&b \\   c&{d - \lambda } \end{array}} \right| = 0     (M1)

{\lambda ^2} - (a + d)\lambda  + ad - bc = 0     A1

using the sum and product properties of the roots of a quadratic equation     R1

{\lambda _1} + {\lambda _2} = a + d,{\text{ }}{\lambda _1}{\lambda _2} = ad - bc = \det \,(M)     AG

[3 marks]

 

(b)     let f(\lambda ) = {\lambda ^2} - (a + d)\lambda  + ad - bc

putting b = 1 - a and d = 1 - c, consider     M1

f(1) = 1 - a - 1 + c + a - ac - c + ac = 0     A1

therefore \lambda  = 1 is an eigenvalue     AG

[2 marks]

 

Note: Allow substitution for b, c into the quadratic equation for \lambda followed by solution of this equation.

 

(c)     using any valid method     (M1)

the eigenvalues are 1 and –1     A1

an eigenvector corresponding to \lambda  = 1 satisfies

\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}x\\y\end{array} \right) or \left( {\begin{array}{*{20}{c}}1&{ - 1}\\3&{ - 3}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}0\\0\end{array} \right)     M1A1

\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}1\\1\end{array} \right) or any multiple     A1

an eigenvector corresponding to \lambda  =  - 1 satisfies

\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) =  - \left( \begin{array}{l}x\\y\end{array} \right) or \left( {\begin{array}{*{20}{c}}3&{ - 1}\\3&{ - 1}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}0\\0\end{array} \right)     M1

\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}1\\3\end{array} \right) or any multiple     A1

 

Note: Award M1A1A1 for calculating the first eigenvector and M1A1 for the second irrespective of the order in which they are calculated.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1 - Linear Algebra » 1.9 » Eigenvalues and eigenvectors of 2 \times 2 matrices.

View options