Date | May 2014 | Marks available | 12 | Reference code | 14M.1.hl.TZ0.4 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Find and Show that | Question number | 4 | Adapted from | N/A |
Question
The matrix M is defined by M = \(\left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).
The eigenvalues of M are denoted by \({\lambda _1},{\text{ }}{\lambda _2}\).
(a) Show that \({\lambda _1} + {\lambda _2} = a + d\) and \({\lambda _1}{\lambda _2} = \det \)(M).
(b) Given that \(a + b = c + d = 1\), show that 1 is an eigenvalue of M.
(c) Find eigenvectors for the matrix \(\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\).
Markscheme
(a) the eigenvalues satisfy \(\left| {\begin{array}{*{20}{c}} {a - \lambda }&b \\ c&{d - \lambda } \end{array}} \right| = 0\) (M1)
\({\lambda ^2} - (a + d)\lambda + ad - bc = 0\) A1
using the sum and product properties of the roots of a quadratic equation R1
\({\lambda _1} + {\lambda _2} = a + d,{\text{ }}{\lambda _1}{\lambda _2} = ad - bc = \det \,\)(M) AG
[3 marks]
(b) let \(f(\lambda ) = {\lambda ^2} - (a + d)\lambda + ad - bc\)
putting \(b = 1 - a\) and \(d = 1 - c\), consider M1
\(f(1) = 1 - a - 1 + c + a - ac - c + ac = 0\) A1
therefore \(\lambda = 1\) is an eigenvalue AG
[2 marks]
Note: Allow substitution for \(b\), \(c\) into the quadratic equation for \(\lambda \) followed by solution of this equation.
(c) using any valid method (M1)
the eigenvalues are 1 and –1 A1
an eigenvector corresponding to \(\lambda = 1\) satisfies
\(\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}x\\y\end{array} \right)\) or \(\left( {\begin{array}{*{20}{c}}1&{ - 1}\\3&{ - 3}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}0\\0\end{array} \right)\) M1A1
\(\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}1\\1\end{array} \right)\) or any multiple A1
an eigenvector corresponding to \(\lambda = - 1\) satisfies
\(\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = - \left( \begin{array}{l}x\\y\end{array} \right)\) or \(\left( {\begin{array}{*{20}{c}}3&{ - 1}\\3&{ - 1}\end{array}} \right)\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}0\\0\end{array} \right)\) M1
\(\left( \begin{array}{l}x\\y\end{array} \right) = \left( \begin{array}{l}1\\3\end{array} \right)\) or any multiple A1
Note: Award M1A1A1 for calculating the first eigenvector and M1A1 for the second irrespective of the order in which they are calculated.
[7 marks]