Processing math: 100%

User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.2.hl.TZ0.9
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 9 Adapted from N/A

Question

The hyperbola with equation x24xy2y2=3 is rotated through an acute anticlockwise angle α about the origin.

The point (x, y) is rotated through an anticlockwise angle α about the origin to become the point (X, Y). Assume that the rotation can be represented by

[XY]=[abcd][xy].

Show, by considering the images of the points (1, 0) and (0, 1) under this rotation that

[abcd]=[cosαsinαsinαcosα].

[3]
a.

By expressing (x, y) in terms of (X, Y), determine the equation of the rotated hyperbola in terms of X and Y.

[3]
b.i.

Verify that the coefficient of XY in the equation is zero when tanα=12.

[3]
b.ii.

Determine the equation of the rotated hyperbola in this case, giving your answer in the form X2A2Y2B2=1.

[3]
b.iii.

Hence find the coordinates of the foci of the hyperbola prior to rotation.

[5]
b.iv.

Markscheme

consider [abcd][10]=[ac]     (M1)

the image of (1, 0) is (cosα, sinα)     A1

therefore a=cosα, c=sinα     AG

consider [abcd][01]=[bd]

the image of (0, 1) is (sinα, cosα)     A1

therefore b=sinα, d=cosα     AG

[3 marks]

a.

[XY]=[cosαsinαsinαcosα][xy][cosαsinαsinαcosα][XY]

or x=Xcosα+Ysinα, y=Xsinα+Ycosα     A1

substituting in the equation of the hyperbola,     M1

(Xcosα+Ysinα)24(Xcosα+Ysinα)(Xsinα+Ycosα)

2(Xsinα+Ycosα)2=3     A1

X2(cos2α2sin2α+4sinαcosα)+

XY(2sinαcosα4cos2α+4sin2α+4sinαcosα)+

Y2(sin2α2cos2α4sinαcosα)=3

[??? marks]

b.i.

when tanα=12, sinα=15 and cosα=25     A1

the XY term=6sinαcosα4cos2α+4sin2α     M1

=6×15×254×45+4×15(125165+45)     A1

=0     AG

[??? marks]

b.ii.

the equation of the rotated hyperbola is

2X23Y2=3     M1A1

X2(32)2Y2(1)2=1     A1

(accept X232Y21=1)

[??? marks]

b.iii.

the coordinates of the foci of the rotated hyperbola

are (±32+1, 0)=(±52, 0)     M1A1

the coordinates of the foci prior to rotation were given by

[25151525][±520]

M1A1

[±212]     A1

[??? marks]

b.iv.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
b.iv.

Syllabus sections

Topic 1 - Linear Algebra » 1.8

View options