Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2017 Marks available 1 Reference code 17M.2.sl.TZ1.7
Level SL only Paper 2 Time zone TZ1
Command term Write down Question number 7 Adapted from N/A

Question

A particle P moves along a straight line. Its velocity vP ms1 after t seconds is given by vP=tsin(π2t), for 0. The following diagram shows the graph of {v_{\text{P}}}.

M17/5/MATME/SP2/ENG/TZ1/07

Write down the first value of t at which P changes direction.

[1]
a.i.

Find the total distance travelled by P, for 0 \leqslant t \leqslant 8.

[2]
a.ii.

A second particle Q also moves along a straight line. Its velocity, {v_{\text{Q}}}{\text{ m}}\,{{\text{s}}^{ - 1}} after t seconds is given by {v_{\text{Q}}} = \sqrt t for 0 \leqslant t \leqslant 8. After k seconds Q has travelled the same total distance as P.

Find k.

[4]
b.

Markscheme

t = 2     A1     N1

[1 mark]

a.i.

substitution of limits or function into formula or correct sum     (A1)

eg\,\,\,\,\,\int_0^8 {\left| v \right|{\text{d}}t,{\text{ }}\int {\left| {{v_Q}} \right|{\text{d}}t,{\text{ }}\int_0^2 {v{\text{d}}t - \int_2^4 {v{\text{d}}t + \int_4^6 {v{\text{d}}t - \int_6^8 {v{\text{d}}t} } } } } }

9.64782

distance = 9.65{\text{ (metres)}}     A1     N2

[2 marks]

a.ii.

correct approach     (A1)

eg\,\,\,\,\,s = \int {\sqrt t ,{\text{ }}\int_0^k {\sqrt t } } {\text{d}}t,{\text{ }}\int_0^k {\left| {{v_{\text{Q}}}} \right|{\text{d}}t}

correct integration     (A1)

eg\,\,\,\,\,\int {\sqrt t  = \frac{2}{3}{t^{\frac{3}{2}}} + c,{\text{ }}\left[ {\frac{2}{3}{x^{\frac{3}{2}}}} \right]_0^k,{\text{ }}\frac{2}{3}{k^{\frac{3}{2}}}}

equating their expression to the distance travelled by their P     (M1)

eg\,\,\,\,\,\frac{2}{3}{k^{\frac{3}{2}}} = 9.65,{\text{ }}\int_0^k {\sqrt t {\text{d}}t = 9.65}

5.93855

5.94 (seconds)     A1     N3

[4 marks]

b.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.

Syllabus sections

Topic 6 - Calculus » 6.4 » Indefinite integration as anti-differentiation.

View options