

Mathematics Higher level Paper 3 – sets, relations and groups

Wednesday 9 May 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

The binary operation multiplication modulo 10, denoted by \times_{10} , is defined on the set $T = \{2, 4, 6, 8\}$ and represented in the following Cayley table.

× ₁₀	2	4	6	8
2	4	8	2	6
4	8	6	4	2
6	2	4	6	8
8	6	2	8	4

- (a) Show that $\{T, \times_{10}\}$ is a group. (You may assume associativity.) [4]
- (b) By making reference to the Cayley table, explain why T is Abelian. [1]
- (c) (i) Find the order of each element of $\{T, \times_{10}\}$.
 - (ii) Hence show that $\{T, \times_{10}\}$ is cyclic and write down all its generators. [6]

The binary operation multiplication modulo 10, denoted by \times_{10} , is defined on the set $V = \{1, 3, 5, 7, 9\}$.

(d) Show that
$$\{V, \times_{10}\}$$
 is not a group. [2]

2. [Maximum mark: 8]

- (a) Consider the sets $A = \{1, 3, 5, 7, 9\}$, $B = \{2, 3, 5, 7, 11\}$ and $C = \{1, 3, 7, 15, 31\}$.
 - (i) Find $(A \cup B) \cap (A \cup C)$.
 - (ii) Verify that $A \setminus C \neq C \setminus A$. [5]

Let *S* be a set containing *n* elements where $n \in \mathbb{N}$.

(b) Show that S has 2^n subsets. [3]

[6]

^	FR 4 :		α
3	[Maximum	mark:	×ı

The relation R is defined such that xRy if and only if |x| + |y| = |x + y| for $x, y \in \mathbb{R}$.

- (a) Show that R is
 - (i) reflexive;
 - (ii) symmetric. [4]
- (b) Show, by means of an example, that R is not transitive. [4]

4. [Maximum mark: 12]

The set of all permutations of the list of the integers 1, 2, 3, 4 is a group, S_4 , under the operation of function composition.

(a) Determine the order of S_4 . [2]

In the group S_4 let $p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ and $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$.

(b) Find the proper subgroup H of order 6 containing p_1, p_2 and their compositions. Express each element of H in cycle form. [5]

Let $f: S_4 \rightarrow S_4$ be defined by $f(p) = p \circ p$ for $p \in S_4$.

- (c) Using p_1 and p_2 , explain why f is not a homomorphism. [5]
- **5.** [Maximum mark: 9]

The function $f: \mathbb{Z} \to \mathbb{Z}$ is defined by $f(n) = n + (-1)^n$.

- (a) Prove that $f \circ f$ is the identity function.
- (b) Show that
 - (i) *f* is injective;
 - (ii) f is surjective. [3]