

Mathematics Higher level Paper 3 – discrete mathematics

Wednesday 9 May 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

×

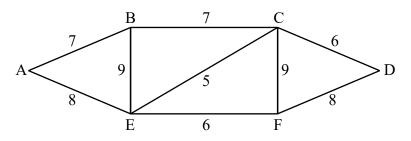
[6]

[2]

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

Consider the following weighted graph G.



- (a) State what feature of G ensures that
 - (i) G has an Eulerian trail;

	(ii)	G does not have an Eulerian circuit.	[2]
(b)	Write	e down an Eulerian trail in G .	[2]

- (c) (i) State the Chinese postman problem.
 - (ii) Starting and finishing at B, find a solution to the Chinese postman problem for G.
 - (iii) Calculate the total weight of the solution.
- **2.** [Maximum mark: 8]
 - (a) State Fermat's little theorem.
 - (b) Consider the linear congruence $ax \equiv b \pmod{p}$ where $a, b, p, x \in \mathbb{Z}^+$, p is prime and a is not a multiple of p.
 - (i) Use Fermat's little theorem to show that $x \equiv a^{p-2}b \pmod{p}$.
 - (ii) Hence solve the linear congruence $5x \equiv 7 \pmod{13}$. [6]

3. [Maximum mark: 11]

Consider the complete bipartite graph $\kappa_{3,3}$.

- (a) (i) Draw $\kappa_{3,3}$.
 - (ii) Show that $\kappa_{3,3}$ has a Hamiltonian cycle.
 - (iii) Draw $\kappa_{3,2}$ and explain why it does not have a Hamiltonian cycle. [4]

(b) (i) In the context of graph theory, state the handshaking lemma.

- (ii) Hence show that a graph G with degree sequence 2, 3, 3, 4, 4, 5 cannot exist. [3]
- Let *T* be a tree with *v* vertices where $v \ge 2$.
- (c) Use the handshaking lemma to prove that T has at least two vertices of degree one. [4]
- 4. [Maximum mark: 6]
 - (a) Show that gcd(4k+2, 3k+1) = gcd(k-1, 2), where $k \in \mathbb{Z}^+, k > 1$. [4]
 - (b) State the value of gcd(4k+2, 3k+1) for
 - (i) odd positive integers k;
 - (ii) even positive integers k. [2]

5. [Maximum mark: 15]

The Fibonacci sequence can be described by the recurrence relation $f_{n+2} = f_{n+1} + f_n$ where $f_0 = 0, f_1 = 1$.

(a) Write down the auxiliary equation and use it to find an expression for f_n in terms of n. [7]

It is known that $\alpha^2 = \alpha + 1$ where $\alpha = \frac{1 + \sqrt{5}}{2}$.

(b) For integers $n \ge 3$, use strong induction on the recurrence relation $f_{n+2} = f_{n+1} + f_n$ to prove that $f_n > \alpha^{n-2}$. [8]