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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. In particular, solutions found from a graphic display
calculator should be supported by suitable working. For example, if graphs are used to find a solution,
you should sketch these as part of your answer. Where an answer is incorrect, some marks may be
given for a correct method, provided this is shown by written working. You are therefore advised to show

all working.

Section A
Answer all questions in the boxes provided. Working may be continued below the lines, if necessary.
1. [Maximum mark: 5]

ABCD is a quadrilateral where AB=6.5,BC=9.1,CD=10.4,DA=7.8 and CDA =90°.
Find ABC, giving your answer correct to the nearest degree.
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[Maximum mark: 7]

A random variable X is normally distributed with mean 3 and variance 2°.

(@) Find P(0<X<2). [2]
(b) Find P(|X|>1). (3]
() If P(X>c)=0.44, find the value of c. [2]
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3. [Maximum mark: 6]
Solve the simultaneous equations
=2
X
Inx*+1Iny’=7
I_ 16EP04
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[Maximum mark: 6]

The sum of the second and third terms of a geometric sequence is 96.
The sum to infinity of this sequence is 500.

Find the possible values for the common ratio, r.
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[Maximum mark: 6]

The function f is defined as f(x) = —

,—1<x<1.
+ X

Find the inverse function, f" stating its domain and range.
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[Maximum mark: 8]

A company produces rectangular sheets of glass of area 5 square metres. During
manufacturing these glass sheets flaws occur at the rate of 0.5 per 5 square metres. Itis
assumed that the number of flaws per glass sheet follows a Poisson distribution.

(@) Find the probability that a randomly chosen glass sheet contains at least one flaw. [3]

Glass sheets with no flaws earn a profit of $5. Glass sheets with at least one flaw incur a
loss of $3.

(b) Find the expected profit, P dollars, per glass sheet. [3]

This company also produces larger glass sheets of area 20 square metres. The rate of
occurrence of flaws remains at 0.5 per 5 square metres.
A larger glass sheet is chosen at random.

(c) Find the probability that it contains no flaws. [2]
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[Maximum mark: 8]

Consider the curve with equation x’+ y’= 4xy.

dy 4y -3x°
(@) Use implicit differentiation to show that & 3)/2—: [3]
vy —4x

The tangent to this curve is parallel to the x-axis at the point where x =k, k> 0.

(b) Find the value of k. [5]

L

16EP0O8

|




-9- M16/5/MATHL/HP2/ENG/TZ2/XX

[Maximum mark: 6]

A particle moves such that its velocity vms™ is related to its displacement s m, by the
equation v(s) = arctan(sins), 0 < s < 1. The particle’s acceleration is ams .

(@) Find the particle’s acceleration in terms of s. [4]

(b) Using an appropriate sketch graph, find the particle’s displacement when its
acceleration is 0.25ms™. 2]
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[Maximum mark: 8]

OACEB is a parallelogram with OA =a and OB = b, where a and b are non-zero vectors.

(@) Show that
i) |0C =la]*+ 2a-b + |p]':
(i) |AB| =|a] ~ 2a-b + B[ " 4]

(b) Given that |OC| = |AB|, prove that OACB is a rectangle. [4]
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Do not write solutions on this page.
Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

10. [Maximum mark: 15]

A continuous random variable T has probability density function f defined by

t]sin 2| <<
, <t<nm
f@) = T
0, otherwise
(@) Sketch the graph of y = (7). [2]
(b)  Use your sketch to find the mode of T. 1
(c) Find the mean of T. [2]
(d) Find the variance of T. [3]
(e) Find the probability that 7' lies between the mean and the mode. [2]
t T
f () Find j f(0)dt where 0 <T < .
0
(i)  Hence verify that the lower quartile of T is g [5]
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Do not write solutions on this page.

11.

L

[Maximum mark: 22]

Points A, B and T lie on a line on an indoor soccer field. The goal, [AB], is 2 metres wide.
A player situated at point P kicks a ball at the goal. [PT] is perpendicular to (AB) and is

6 metres from a parallel line through the centre of [AB]. Let PT be x metres and

let & = APB measured in degrees. Assume that the ball travels along the floor.

2m

7' N
v

(@) Find the value of a when x=10. [4]
(b) Show that tana = 2x [4]
X2+ 35

The maximum for tan a gives the maximum for «.

(c) (i) Find %(tana).

d
(i)  Hence or otherwise find the value of o such that ™ (tanax) = 0.

d2
(ii) Find o (tana) and hence show that the value of a never exceeds 10°. [11]

(d) Find the set of values of x for which a>7°. [3]
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Do not write solutions on this page.
12. [Maximum mark: 23]
The functions f and g are defined by
S =S xeR
2
gx)==—"— xeR
2
ex

(@) () Show that 470 - 22(x) = 3

In3 1

(i)  Use the substitution u =¢* to find j dx. Give your answer in the
s 0 4/ (x) - 2g(x)
form % where a,beZ’. [9]

Let A(x) =nf(x) + g(x) where ne R, n> 1.
(b) (i) By forming a quadratic equation in €', solve the equation i(x) = k, where ke R".

(i)  Hence or otherwise show that the equation 4(x) = k£ has two real solutions
provided that k > \Jn’—1 and ke R". [8]

Let #(x) = Jgpg

/] - [e®]
[f@T
(i)  Hence show that ¢'(x) >0 for xe R. [6]

() (i) Show that #(x) = for x e R.
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