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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1. [Maximum mark:  19]

	 All	of	the	relations	in	this	question	are	defined	on	� \{ }0 .

 (a) Decide, giving a proof or a counter-example, whether xRy x y⇔ + > 7  is 

	 	 (i)	 reflexive;

	 	 (ii)	 symmetric;

  (iii) transitive. [4 marks]

 (b) Decide, giving a proof or a counter-example, whether xRy x y⇔ − < − <2 2  is 

	 	 (i)	 reflexive;

	 	 (ii)	 symmetric;

  (iii) transitive. [4 marks]

 (c) Decide, giving a proof or a counter-example, whether xRy xy⇔ > 0  is 

	 	 (i)	 reflexive;

	 	 (ii)	 symmetric;

  (iii) transitive. [4 marks]

 (d) Decide, giving a proof or a counter-example, whether xRy x
y

⇔ ∈�  is 

	 	 (i)	 reflexive;

	 	 (ii)	 symmetric;

  (iii) transitive. [4 marks]

 (e) One of the relations from parts (a), (b), (c) and (d) is an equivalence relation.  
For this relation, state what the equivalence classes are. [3 marks]
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Turn over 

2. [Maximum mark:  9]

 Let  A  be the set of 2 1× 	matrices	defined	as	follows:	A =
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 (a) Evaluate f
5
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 . [1 mark]

 (b) Prove that  f  is an injection. [2 marks]

 (c) Prove that  f  is a surjection. [2 marks]

 (d) Find f
x
y
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1 . [2 marks]

 Another function  g		is	defined	from		A  to  A  by g
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 (e) Is  g  a bijection?  Justify your answer. [2 marks]
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3. [Maximum mark:  15]

 Let A a b={ , } .

 (a) Write down all four subsets of  A . [1 mark]

 Let the set of all these subsets be denoted by P A( ) .  The binary operation symmetric 
difference, ∆ ,	is	defined	on	P A( )  by X Y X Y Y X∆ = ∪( \ ) ( \ )  where X Y P A, ( )∈ .

 (b) Construct the Cayley table for P A( )  under ∆ . [3 marks]

 (c) Prove that { ( ), }P A ∆  is a group.  You are allowed to assume that ∆  is associative. [3 marks]

 Let � 4 0 1 2 3={ , , , }  and +4  denote addition modulo 4.

 (d) Is { ( ), }P A ∆  isomorphic to { , }� 4 4+ ?  Justify your answer. [2 marks]

 Let  S  be any non-empty set.  Let P S( )  be the set of all subsets of  S .  For the following 
parts, you are allowed to assume that ∆ , ∪  and ∩  are associative.

 (e) (i) State the identity element for { ( ), }P S ∆ . 

  (ii) Write down X −1  for X P S∈ ( ) .

  (iii) Hence prove that { ( ), }P S ∆  is a group. [4 marks]

 (f) Explain why { ( ), }P S ∪  is not a group. [1 mark]

 (g) Explain why { ( ), }P S ∩  is not a group. [1 mark]
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4. [Maximum mark:  17]

 Let  c  be a positive, real constant.  Let  G  be the set { }x c x c∈ − < <� .  The binary 

operation * is	defined	on	the	set		G  by x y x y
xy
c

* = +

+1 2

.

 (a) Simplify c c
2
3
4*

. [2 marks]

 (b) State the identity element for  G  under *. [1 mark]

 (c) For x G∈ 	find	an	expression	for	 x−1  (the inverse of  x  under *). [1 mark]

 (d) Show that the binary operation * is commutative on  G . [2 marks]

 (e) Show that the binary operation * is associative on  G . [4 marks]

 (f) (i) If x y G, ∈  explain why ( ) ( )c x c y− − > 0 .

  (ii) Hence show that x y c xy
c

+ < + . [2 marks]

 You are also told that − − < +c xy
c

x y .

 (g) Show that  G  is closed under *. [2 marks]

 (h) Explain why { , *}G  is an Abelian group. [2 marks]

 (i) State what happens to the group { , *}G  as c →∞ . [1 mark]


