

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 8 November 2012 (morning)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics SL* information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1.	[Maximum	mark:	191
	1 111 0000 011 000110	muli iv.	1/1

All of the relations in this question are defined on $\mathbb{Z}\setminus\{0\}$.

- (a) Decide, giving a proof or a counter-example, whether $xRy \Leftrightarrow x+y > 7$ is
 - (i) reflexive;
 - (ii) symmetric;
 - (iii) transitive. [4 marks]
- (b) Decide, giving a proof or a counter-example, whether $xRy \Leftrightarrow -2 < x y < 2$ is
 - (i) reflexive;
 - (ii) symmetric;
 - (iii) transitive. [4 marks]
- (c) Decide, giving a proof or a counter-example, whether $xRy \Leftrightarrow xy > 0$ is
 - (i) reflexive;
 - (ii) symmetric;
 - (iii) transitive. [4 marks]
- (d) Decide, giving a proof or a counter-example, whether $xRy \Leftrightarrow \frac{x}{y} \in \mathbb{Z}$ is
 - (i) reflexive;
 - (ii) symmetric;
 - (iii) transitive. [4 marks]
- (e) One of the relations from parts (a), (b), (c) and (d) is an equivalence relation. For this relation, state what the equivalence classes are. [3 marks]

2. [Maximum mark: 9]

Let A be the set of 2×1 matrices defined as follows: $A = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| x, y \in \mathbb{R} \right\}$. A function f is defined from A to A by $f \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

-3-

- (a) Evaluate $f\left(\begin{pmatrix} 5 \\ 6 \end{pmatrix}\right)$. [1 mark]
- (b) Prove that f is an injection. [2 marks]
- (c) Prove that f is a surjection. [2 marks]
- (d) Find $f^{-1}\begin{pmatrix} x \\ y \end{pmatrix}$. [2 marks]

Another function g is defined from A to A by $g\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.

(e) Is g a bijection? Justify your answer. [2 marks]

3. [Maximum mark: 15]

Let $A = \{a, b\}$.

(a) Write down all four subsets of A.

[1 mark]

Let the set of all these subsets be denoted by P(A). The binary operation symmetric difference, Δ , is defined on P(A) by $X\Delta Y = (X \setminus Y) \cup (Y \setminus X)$ where $X, Y \in P(A)$.

(b) Construct the Cayley table for P(A) under Δ .

[3 marks]

(c) Prove that $\{P(A), \Delta\}$ is a group. You are allowed to assume that Δ is associative.

[3 marks]

Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and $+_4$ denote addition modulo 4.

(d) Is $\{P(A), \Delta\}$ isomorphic to $\{\mathbb{Z}_4, +_4\}$? Justify your answer.

[2 marks]

Let S be any non-empty set. Let P(S) be the set of all subsets of S. For the following parts, you are allowed to assume that Δ , \cup and \cap are associative.

- (e) (i) State the identity element for $\{P(S), \Delta\}$.
 - (ii) Write down X^{-1} for $X \in P(S)$.

(iii) Hence prove that $\{P(S), \Delta\}$ is a group.

[4 marks]

(f) Explain why $\{P(S), \cup\}$ is not a group.

[1 mark]

(g) Explain why $\{P(S), \cap\}$ is not a group.

[1 mark]

4. [Maximum mark: 17]

Let c be a positive, real constant. Let G be the set $\{x \in \mathbb{R} \mid -c < x < c\}$. The binary operation * is defined on the set G by $x * y = \frac{x + y}{1 + \frac{xy}{c^2}}$.

- (a) Simplify $\frac{c}{2} * \frac{3c}{4}$. [2 marks]
- (b) State the identity element for G under *. [1 mark]
- (c) For $x \in G$ find an expression for x^{-1} (the inverse of x under *). [1 mark]
- (d) Show that the binary operation * is commutative on G. [2 marks]
- (e) Show that the binary operation * is associative on G. [4 marks]
- (f) (i) If $x, y \in G$ explain why (c-x)(c-y) > 0.
 - (ii) Hence show that $x + y < c + \frac{xy}{c}$. [2 marks]

You are also told that $-c - \frac{xy}{c} < x + y$.

- (g) Show that G is closed under *. [2 marks]
- (h) Explain why $\{G, *\}$ is an Abelian group. [2 marks]
- (i) State what happens to the group $\{G, *\}$ as $c \to \infty$. [1 mark]