N12/5/MATHL/HP2/ENG/TZ0/XX/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2012

MATHEMATICS

Higher Level

Paper 2

19 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation.

Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. **METHOD 1**

$102 + 105 + \ldots + 498$	(M1)
so number of terms $= 133$	(A1)

EITHER

OR

$$= (102 + 498) \times \frac{133}{2} \tag{M1}$$

OR

METHOD 2

 $500 \div 3 = 166.666...$ and $100 \div 3 = 33.333...$

$$102 + 105 + \ldots + 498 = \sum_{n=1}^{166} 3n - \sum_{n=1}^{33} 3n$$
 (M1)

$$\sum_{n=1}^{166} 3n = 41583 \tag{A1}$$

$$\sum_{n=1}^{33} 3n = 1683 \tag{A1}$$

[4 marks]

2.	$\Delta = (5-k)^2 + 4(k+2)$	M1A1
	$=k^2-6k+33$	(A1)
	$=(k-3)^2+24$ which is positive for all k	<i>R1</i>
Note	: Accept analytical, graphical or other correct methods. In all cases only award <i>R1</i> if a reason is given in words or graphically. Award <i>M1A1A0R1</i> if mistakes are made in the simplification but <u>the argument given is correct</u> .][4

3.	$\det A = 3\ln x - 2\ln(5 - x)$	(M1)(A1)
	$A \text{ singular} \Rightarrow \det A = 0$	(M1)
	attempt to solve $3\ln x - 2\ln(5 - x) = 0$ (eg graph sketch)	(M1)
	x = 2.0547	A1
	x = 2.05 (3sf)	

Note: Award the last *M1* just in the cases where there is evidence that a correct method has been attempted.

marks]

 $\frac{\sum_{i=1}^{15} x_i}{15} = 11.5 \Rightarrow \sum_{i=1}^{15} x_i = 172.5$ (A1)
new mean = $\frac{172.5 - 22.1}{14}$ (M1)

$$= 10.7428... = 10.7 (3sf)$$
 A1

$$\frac{\sum_{i=1}^{X_{i}^{*}} -11.5^{2} = 9.3}{\frac{15}{15}}$$
(M1)

$$\Rightarrow \sum_{i=1}^{n} x_i^2 = 2123.25$$
new variance = $\frac{2123.25 - 22.1^2}{14} - (10.7428...)^2$
(M1)
= 1.37 (3sf)
A1

[6 marks]

the pieces have lengths $a, ar, ..., ar^9$ 5. (M1)

$$8a = ar^9$$
 (or $8 = r^9$)

$$8a = ar$$
 (or $8 = r$)
 $r = \sqrt[9]{8} = 1.259922...$

$$a\frac{r^{10}-1}{r-1} = 1 \qquad \left(\text{ or } a\frac{r^{10}-1}{r-1} = 1000 \right) \qquad \qquad M1$$

$$a = \frac{r-1}{r-1} = 0.0286... \qquad \left(\text{ or } a = \frac{r-1}{r-1} = 28.6... \right) \qquad \qquad (A1)$$

$$a = \frac{r-1}{r^{10}-1} = 0.0286...$$
 (or $a = \frac{r-1}{r^{10}-1} = 28.6...$) (A1)

a = 29 mm (accept 0.029 m or any correct answer regardless the units) *A1*

[6 marks]

A1

A1

6.
$$2s\frac{ds}{dt} + \frac{ds}{dt} - 2 = 0$$

$$M1A1$$

$$v = \frac{ds}{dt} = \frac{2}{2t}$$

$$A1$$

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \frac{2}{2s+1}$$

EITHER

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}t} \tag{M1}$$

$$\frac{dv}{ds} = \frac{-4}{(2s+1)^2}$$
(A1)
-4 ds

$$a = \frac{-4}{\left(2s+1\right)^2} \frac{\mathrm{d}s}{\mathrm{d}t}$$

OR

$$2\left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)^{2} + 2s\frac{\mathrm{d}^{2}s}{\mathrm{d}t^{2}} + \frac{\mathrm{d}^{2}s}{\mathrm{d}t^{2}} = 0 \tag{M1}$$
$$\frac{\mathrm{d}^{2}s}{\frac{\mathrm{d}t^{2}}{a}} = \frac{-2\left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)^{2}}{2s+1} \tag{A1}$$

THEN

$$a = \frac{-8}{\left(2s+1\right)^3} \tag{A1}$$

[6 marks]

-10 - N12/5/MATHL/HP2/ENG/TZ0/XX/M

7. (a)
$$P(WWW) = 0.75 \times 0.375 \times 0.1875 = 0.0527 \ (3sf) \left(\frac{3}{4} \times \frac{3}{8} \times \frac{3}{16} = \frac{27}{512}\right)$$
 (M1)A1

[2 marks]

(b)

(M1)(A1)

Note: Award *M1* for any reasonable attempt to use a tree diagram showing that three games were played (do not award *M1* for tree diagrams that only show the first two games) and *A1* for the highlighted probabilities. $P(\text{wins 2 games} | \text{wins first game}) = \frac{P(WWL, WLW)}{P(\text{wins first game})}$ (*M1*) $= \frac{0.75 \times 0.375 \times 0.8125 + 0.75 \times 0.625 \times 0.375}{0.75}$ (*A1*)(*A1*) $= 0.539 (3sf) \left(\text{or } \frac{69}{128} \right)$ *A1* Note: Candidates may use the tree diagram to obtain the answer without using the conditional probability formula, *ie*, P(wins 2 games | wins first game) = 0.375 \times 0.8125 + 0.625 \times 0.375 = 0.539.

[6 marks]

Total [8 marks]

8.
$$x = \sin t, \, dx = \cos t \, dt$$
$$\int \frac{x^3}{\sqrt{1 - x^2}} \, dx = \int \frac{\sin^3 t}{\sqrt{1 - \sin^2 t}} \cos t \, dt$$
$$= \int \sin^3 t \, dt$$
(A1)

$$= \int \sin^2 t \, \sin t \, \mathrm{d}t$$

$$= \int (1 - \cos^2 t) \sin t \, dt \qquad M1A1$$

$$= \int \sin t \, \mathrm{d}t - \int \cos^2 t \sin t \, \mathrm{d}t$$

$$= -\sqrt{1 - x^{2}} + \frac{1}{3} \left(\sqrt{1 - x^{2}} \right)^{3} + C$$
 A1

$$\left(= -\sqrt{1 - x^2} \left(1 - \frac{1}{3} (1 - x^2) \right) + C \right)$$
$$\left(= -\frac{1}{3} \sqrt{1 - x^2} (2 + x^2) + C \right)$$

[7 marks]

9.

intersection points

A1A1

Note: Only either the *x*-coordinate or the *y*-coordinate is needed.

EITHER

$$x = y^{2} - 3 \Longrightarrow y = \pm \sqrt{x+3} \qquad (\text{accept } y = \sqrt{x+3}) \tag{M1}$$

$$A = \int_{-3}^{-1.11...} 2\sqrt{x+3} \, dx + \int_{-1.111...}^{1.2739...} \sqrt{x+3} - x^3 \, dx \qquad (M1)A1A1$$

= 3.4595 + 3.8841

$$= 5.4395... + 5.8841...$$

= 7.34 (3sf) $A1$

OR

$$y = x^3 \Longrightarrow x = \sqrt[3]{y} \tag{M1}$$

$$A = \int_{-1.374...}^{2.067...} \sqrt[3]{y} - (y^2 - 3) dy$$
 (M1)A1

$$= 7.34 (3sf)$$

[7 marks]

A2

10. METHOD 1

$$(1 - \omega^2)^* = (1 - \operatorname{cis} 2\theta)^* = ((1 - \cos 2\theta) - i \sin 2\theta)^*$$

= (1 - \cos 2\theta) + i \sin 2\theta
A1

$$\left| \left(1 - \omega^2\right)^* \right| = \sqrt{\left(1 - \cos 2\theta\right)^2 + \sin^2 2\theta} \left(= \sqrt{\left(2\sin^2 \theta\right)^2 + \left(2\sin\theta\cos\theta\right)^2} \right)$$
 M1

$$= |2\sin\theta| \qquad \qquad A1$$

$$\arg((1-\omega^2)^*) = \alpha \Rightarrow \tan \alpha = \cot(\theta)$$
 M1

$$\alpha = \frac{\pi}{2} - \theta \tag{A1}$$

therefore:

modulus is
$$2|\sin\theta|$$
 and argument is $\frac{\pi}{2} - \theta$ or $\frac{\pi}{2} - \theta \pm \pi$
Note: Accept modulus is $2\sin\theta$ and argument is $\frac{\pi}{2} - \theta$

METHOD 2

EITHER

$$(1 - \omega^{2})^{*} = (1 - \operatorname{cis} 2\theta)^{*} = ((1 - \cos 2\theta) - i \sin 2\theta)^{*}$$

$$= (1 - \cos 2\theta) + i \sin 2\theta$$

$$= (1 - 1 + 2 \sin^{2} \theta) + 2 i \sin \theta \cos \theta$$
M1A1
$$M1$$

OR

$$(1-\omega^2)^* = \left(1-(\cos\theta+i\sin\theta)^2\right)^*$$
M1A1

$$= \left(1 - \cos^2 \theta + \sin^2 \theta - 2i \sin \theta \cos \theta\right)^*$$
 A1

$$= 2\sin^2\theta + 2i\sin\theta\cos\theta$$

THEN

$$= 2\sin\theta(\sin\theta + i\cos\theta) \tag{M1}$$

$$= 2\sin\theta \left(\cos\left(\frac{\pi}{2} - \theta\right) + i\sin\left(\frac{\pi}{2} - \theta\right)\right)$$

$$= 2\sin\theta \cos\left(\frac{\pi}{2} - \theta\right)$$
A1A1

therefore:

modulus is
$$2|\sin\theta|$$
 and argument is $\frac{\pi}{2} - \theta$ or $\frac{\pi}{2} - \theta \pm \pi$
Note: Accept modulus is $2\sin\theta$ and argument is $\frac{\pi}{2} - \theta$.

[7 marks]

M1

SECTION B

11.	(a)	$2.2 \times 6 \times 60 = 792$	(M1)A1	
			[2 marl	ks]
	(b)	$V \sim Po(2.2 \times 60)$	<i>(M1)</i>	
		P(V > 100) = 0.998	(M1)A1	
			[3 mark	ks]
	(c)	$(0.997801)^6 = 0.987$	(M1)A1	
			[2 mark	ks]
	(d)	$A \sim N(\mu, \sigma^2)$		

$P(A < 35) = 0.29$ and $P(A > 55) = 0.23 \Rightarrow P(A < 55) = 0.77$	
$P\left(Z < \frac{35-\mu}{\sigma}\right) = 0.29$ and $P\left(Z < \frac{55-\mu}{\sigma}\right) = 0.77$	(M1)
use of inverse normal	(M1)
$\frac{35-\mu}{\sigma} = -0.55338$ and $\frac{55-\mu}{\sigma} = 0.738846$	(A1)
solving simultaneously	(M1)
$\mu = 43.564$ and $\sigma = 15.477$	A1A1
$\mu = 43.6$ and $\sigma = 15.5(3sf)$	
	[6 marks]

(e)	$0.29n = 100 \Longrightarrow n = 344.82\dots$	(M1)(A1)
	P(A < 50) = 0.66121	(A1)
	expected number of visitors under $50 = 228$	(M1)A1

[5 marks]

Total [18 marks]

12. (a)
$$L = CA + AD$$

$$\sin \alpha = \frac{a}{CA} \Rightarrow CA = \frac{a}{\sin \alpha}$$

$$\cos \alpha = \frac{b}{AD} \Rightarrow AD = \frac{b}{\cos \alpha}$$
A1
A1

$$L = \frac{a}{\sin \alpha} + \frac{b}{\cos \alpha}$$
 AG

M1

(b)
$$a = 5 \text{ and } b = 1 \Rightarrow L = \frac{5}{\sin \alpha} + \frac{1}{\cos \alpha}$$

METHOD 2

$\frac{\mathrm{d}L}{\mathrm{d}\alpha} = \frac{-5\cos\alpha}{\sin^2\alpha} + \frac{\sin\alpha}{\cos^2\alpha}$	<i>(M1)</i>	
$\frac{dL}{d\alpha} = 0 \Rightarrow \frac{\sin^3 \alpha}{\cos^3 \alpha} = 5 \Rightarrow \tan \alpha = \sqrt[3]{5} (\alpha = 1.0416)$	(M1)	
minimum of L gives the max length of the painting	<i>R1</i>	
maximum length = 7.77	A1	
	l4 mark	ks]

(c)
$$\frac{dL}{d\alpha} = \frac{-3k\cos\alpha}{\sin^2\alpha} + \frac{k\sin\alpha}{\cos^2\alpha}$$
 (or equivalent) *M1A1A1*
[3 marks]

continued ...

Question 12 continued

(d)
$$\frac{dL}{d\alpha} = \frac{-3k\cos^3\alpha + k\sin^3\alpha}{\sin^2\alpha\cos^2\alpha}$$
 (A1)

$$\frac{dL}{d\alpha} = 0 \Rightarrow \frac{\sin^3 \alpha}{\cos^3 \alpha} = \frac{3k}{k} \Rightarrow \tan \alpha = \sqrt[3]{3} \quad (\alpha = 0.96454...)$$
 M1A1

$$\tan \alpha = \sqrt[3]{3} \Rightarrow \frac{1}{\cos \alpha} = \sqrt{1 + \sqrt[3]{9}} \qquad (1.755...)$$
(A1)

and
$$\frac{1}{\sin \alpha} = \frac{\sqrt{1 + \sqrt[3]{9}}}{\sqrt[3]{3}}$$
 (1.216...) (A1)

$$L = 3k \left(\frac{\sqrt{1 + \sqrt[3]{9}}}{\sqrt[3]{3}}\right) + k\sqrt{1 + \sqrt[3]{9}} \qquad (L = 5.405598...k)$$
 A1 N4

[6 marks]

(e)
$$L \le 8 \Rightarrow k \ge 1.48$$

the minimum value is 1.48

[2 marks]

M1A1

Total [18 marks]

- 17 -N12/5/MATHL/HP2/ENG/TZ0/XX/M

Note: Accept alternative notation for vectors (eg $\langle a, b, c \rangle$ or (a, b, c)). 13.

(a)
$$\boldsymbol{n} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$$
 and $\boldsymbol{m} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ (A1)

$$\cos\theta = \frac{n \cdot m}{|n||m|} \tag{M1}$$

$$\cos\theta = \frac{2+2+3}{\sqrt{1+4+9}\sqrt{4+1+1}} = \frac{7}{\sqrt{14}\sqrt{6}}$$

 $\theta = 40.2^{\circ} \quad (0.702 \text{ rad})$

A1

$$\theta = 40.2^{\circ}$$
 (0.702 rad)

[4 marks]

(b) **METHOD 1**

eliminate *z* from x - 2y - 3z = 2 and 2x - y - z = k $5x - y = 3k - 2 \Longrightarrow x = \frac{y - (2 - 3k)}{5}$ *M1A1* eliminate *y* from x - 2y - 3z = 2 and 2x - y - z = k

$$3x + z = 2k - 2 \Longrightarrow x = \frac{z - (2k - 2)}{-3}$$

$$x = t, \ y = (2 - 3k) + 5t \text{ and } z = (2k - 2) - 3t$$

$$r = \begin{pmatrix} 0 \\ 2 - 3k \\ 2k - 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$$

$$AIAI$$

$$AG$$

[5 marks]

METHOD 2

(1) (2) (-1)	$\begin{pmatrix} 1 \end{pmatrix}$	
$-2 \times -1 = -5 \Rightarrow \text{direction}$	n is 5	M1A1
$\begin{pmatrix} -3 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$	(-3)	

Let $x = 0$	
$0 - 2y - 3z = 2$ and $2 \times 0 - y - z = k$	(M1)
solve simultaneously	(M1)
y = 2 - 3k and z = 2k - 2	A1

therefore
$$\mathbf{r} = \begin{pmatrix} 0\\ 2-3k\\ 2k-2 \end{pmatrix} + t \begin{pmatrix} 1\\ 5\\ -3 \end{pmatrix}$$
 AG

[5 marks]

continued ...

Question 13 continued

METHOD 3

substitute $x = t$, $y = (2-3k) + 5t$ and $z = (2k-2) - 3t$ into π_1 and π_2	M1
for $\pi_1: t - 2(2 - 3k + 5t) - 3(2k - 2 - 3t) = 2$	<i>A1</i>
for $\pi_2: 2t - (2 - 3k + 5t) - (2k - 2 - 3t) = k$	<i>A1</i>
the planes have a unique line of intersection	<i>R2</i>
therefore the line is $\mathbf{r} = \begin{pmatrix} 0\\ 2-3k\\ 2k-2 \end{pmatrix} + t \begin{pmatrix} 1\\ 5\\ -3 \end{pmatrix}$	AG

[5 marks]

M1A1

(c) 5-t = (2-3k+5t)+3 = 2-2(2k-2-3t)

Note: Award <i>M1A1</i> if candidates use vector or parametric equations of L_2	
$\begin{pmatrix} 0 \\ \end{pmatrix} \begin{pmatrix} 1 \\ \end{pmatrix} \begin{pmatrix} 5 \\ \end{pmatrix} \begin{pmatrix} -2 \\ \end{pmatrix}$ $\begin{pmatrix} t = 5 - 2s \\ \end{pmatrix}$	
$eg 2-3k +t 5 = -3 +s 2 \text{ or } \Rightarrow 2-3k+5t = -3+2s$	
$\begin{pmatrix} 2k-2 \end{pmatrix}$ $\begin{pmatrix} -3 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} -1 \end{pmatrix}$ $\begin{pmatrix} 2k-2-3t=1+s \end{pmatrix}$	
solve simultaneously	<i>M1</i>
k = 2, t = 1 (s = 2)	A1
intersection point $(1, 1, -1)$	<i>A1</i>
	[5 marks]

(d)
$$\vec{l}_{2} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

 $\vec{l}_{1} \times \vec{l}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 5 & -3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{pmatrix} -1 \\ -7 \\ -12 \end{pmatrix}$ (M1)A1
 $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 7 \\ 12 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 7 \\ 12 \end{pmatrix}$ (M1)
 $\mathbf{x} + 7\mathbf{y} + 12\mathbf{z} = -4$ A1
[5 marks]

continued ...

-19 - N12/5/MATHL/HP2/ENG/TZ0/XX/M

Question 13 continued

(e) Let
$$\theta$$
 be the angle between the lines $\vec{l_1} = \begin{pmatrix} 1 \\ 5 \\ -3 \end{pmatrix}$ and $\vec{l_2} = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$.
 $\cos\theta = \frac{|2 - 10 - 3|}{\sqrt{35}\sqrt{9}} \Rightarrow \theta = 0.902334...(51.699...^{\circ})$ (M1)
as the triangle XYZ has a right angle at Y,
 $XZ = a \Rightarrow YZ = a \sin\theta$ and $XY = a \cos\theta$ (M1)
 $\operatorname{area} = 3 \Rightarrow \frac{a^2 \sin\theta \cos\theta}{2} = 3$ (M1)

$$a = 3.5122...$$
 (A1)

perimeter =
$$a + a\sin\theta + a\cos\theta = 8.44537... = 8.45$$
 A1

Note: If candidates attempt to find coordinates of Y and Z award M1 for expression of vector YZ in terms of two parameters, M1 for attempt to use perpendicular condition to determine relation between parameters, M1 for attempt to use the area to find the parameters and A2 for final answer.

[5 marks]

Total [24 marks]