

MATHEMATICS HIGHER LEVEL PAPER 1

Thursday 7 May 2009 (afternoon)

2 hours

0 0	

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]
	When the function $q(x) = x^3 + kx^2 - 7x + 3$ is divided by $(x+1)$ the remainder is seven times the remainder that is found when the function is divided by $(x+2)$.
	Find the value of k .

2. [Maximum mark: 5]

The test scores of a group of students are shown on the cumulative frequency graph below.

(a) Estimate the median test score.

[1 mark]

- (b) The top 10 % of students receive a grade A and the next best 20 % of students receive a grade B. Estimate
 - (i) the minimum score required to obtain a grade A;

(**)	. 1					1	1 5
(ii)	the m	ıınımıım	score	reguired	to	obtain	a grade B

[4 marks]

				 							 				•	•					•												
				 							 															-							

3. [Maximum mark: 6]

A random variable has a probability density function given by

$$f(x) = \begin{cases} kx(2-x), & 0 \le x \le 2\\ 0, & \text{elsewhere.} \end{cases}$$

(a)	Show that $k = \frac{3}{4}$.	[4 marks]
	4	

(b)	Find $E(X)$.	[2 marks]

4. [Maximum mark: 6]

()	GI II	3	2	5x + 11	5 0 1 3
(a)	Show that	$\frac{1}{x+1}$	$+{x+3} =$	$=\frac{5x+11}{x^2+4x+3}$.	[2 marks]

(b)	Hence find the value of k such that $\int_0^2 \frac{5x+11}{x^2+4x+3} dx = \ln k$.	[4 marks]

 	 	 		 	 	 	 	 	•	 	 	 •		 		 	
 	 	 		 	 	 	 	 	-	 	 ٠.		 	 		 	
 	 	 	٠.	 	 	 	 	 	-	 	 ٠.		 	 		 	
 	 	 		 	 	 	 	 ٠.		 	 		 	 		 	
 	 	 		 	 	 	 	 	-	 	 		 	 		 	
 	 	 		 	 	 	 	 	-	 	 	 	 	 		 	

5. [Maximum mark: 8]

Consider the part of the curve $4x^2 + y^2 = 4$ shown in the diagram below.

(a) Find an expression for $\frac{dy}{dx}$ in terms of x and y.

[3 marks]

(b) Find the gradient of the tangent at the point $\left(\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$.

[1 mark]

(c) A bowl is formed by rotating this curve through 2π radians about the *x*-axis. Calculate the volume of this bowl.

[4 marks]

	•	 •	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	• •	 •	•	•	 	•	•	•	

6. [Maximum mark: 6]

Let $\mathbf{M} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ where a and b are non-zero real numbers.

(a) Show that M is non-singular.

[2 marks]

(b) Calculate M^2 .

[2 marks]

(c) Show that $det(M^2)$ is positive.

[2 marks]

•	•	٠	٠	•	•	•	•	•	•	•	 		•	•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	 	•	 ٠	•	•	•	•	•	•	•	•	-	 	•	•	•	 	•	٠	•	•	•	•	•	 •	•	٠	٠	•

.....

7	[Maximum m	ant.	Q7
/.	I VIAXIIIIUIII II	iark.	OI

Given that $z_1 = 2$ and $z_2 = 1 + \sqrt{3}i$ are roots of the cubic equation $z^3 + bz^2 + cz + d = 0$ where $b, c, d \in \mathbb{R}$,

(a) write down the third root, z_3 , of the equation;

[1 mark]

(b) find the values of b, c and d;

[4 marks]

(c) write z_2 and z_3 in the form $re^{i\theta}$.

[3 marks]

•	•	•	•	•	•	•	•	•	•		 •	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	 •	•	•	•		•	•	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	•
	_	_	_	_	_	_	_		_					_	_	_									_				 _				_		 _							_		_	 _			_	_		 	_			_	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•			 •	•	•	•	•		 •	•	•	•	•		•	•	•	•	 •	•	•	•	•			•	•	-	•	

8. [Maximum mark:	8
--------------------------	---

Prove by mathem	natical induction	$\sum_{r=1}^{n} r(r!) = (n+1)! - 1, \ n \in \mathbb{Z}^{+}.$	

9.	[Maximum	mark:	87

	A tri	angle has sides of length $(n + n + 1)$, $(2n + 1)$ and $(n - 1)$ where $n > 1$.	
(b) Show that the largest angle, θ , of the triangle is 120° . [5 marks]	(a)	Explain why the side $(n^2 + n + 1)$ must be the longest side of the triangle.	[3 marks]
	(b)	Show that the largest angle, θ , of the triangle is 120° .	[5 marks]

SECTION B

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 22]

- (a) Show that a Cartesian equation of the line, l_1 , containing points A(1, -1, 2) and B(3, 0, 3) has the form $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$. [2 marks]
- (b) An equation of a second line, l_2 , has the form $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$. Show that the lines l_1 and l_2 intersect, and find the coordinates of their point of intersection. [5 marks]
- (c) Given that direction vectors of l_1 and l_2 are d_1 and d_2 respectively, determine $d_1 \times d_2$. [3 marks]
- (d) Show that a Cartesian equation of the plane, Π , that contains l_1 and l_2 is -x-y+3z=6. [3 marks]
- (e) Find a vector equation of the line l_3 which is perpendicular to the plane Π and passes through the point T(3, 1, -4). [2 marks]
- (f) (i) Find the point of intersection of the line l_3 and the plane Π .
 - (ii) Find the coordinates of T', the reflection of the point T in the plane Π .
 - (iii) Hence find the magnitude of the vector $\overrightarrow{TT'}$. [7 marks]

11. [Maximum mark: 16]

A function is defined as $f(x) = k\sqrt{x}$, with k > 0 and $x \ge 0$.

(a) Sketch the graph of y = f(x).

[1 mark]

(b) Show that f is a one-to-one function.

[1 mark]

(c) Find the inverse function, $f^{-1}(x)$ and state its domain.

[3 marks]

(d) If the graphs of y = f(x) and $y = f^{-1}(x)$ intersect at the point (4, 4) find the value of k.

[2 marks]

- (e) Consider the graphs of y = f(x) and $y = f^{-1}(x)$ using the value of k found in part (d).
 - (i) Find the area enclosed by the two graphs.
 - (ii) The line x = c cuts the graphs of y = f(x) and $y = f^{-1}(x)$ at the points P and Q respectively. Given that the tangent to y = f(x) at point P is parallel to the tangent to $y = f^{-1}(x)$ at point Q find the value of c.

[9 marks]

12. [Maximum mark: 22]

The complex number z is defined as $z = \cos \theta + i \sin \theta$.

(a) State de Moivre's theorem.

[1 mark]

(b) Show that $z^n - \frac{1}{z^n} = 2i\sin(n\theta)$.

[3 marks]

(c) Use the binomial theorem to expand $\left(z - \frac{1}{z}\right)^5$ giving your answer in simplified form.

[3 marks]

(d) Hence show that $16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin \theta$.

[4 marks]

(e) Check that your result in part (d) is true for $\theta = \frac{\pi}{4}$.

[4 marks]

(f) Find $\int_0^{\frac{\pi}{2}} \sin^5 \theta \, d\theta$.

[4 marks]

(g) Hence, with reference to graphs of circular functions, find $\int_0^{\frac{\pi}{2}} \cos^5 \theta \, d\theta$, explaining your reasoning.

[3 marks